Are They Learning or Guessing? Investigating Trial-and-Error Behavior with Limited Test Attempts

Bowen Hui

Computer Science University of British Columbia Okanagan Campus

Motivation

- Prevalent use of mastery learning platforms
 - Gives multiple chances on assignments/exams
 - Focus on deliberate practice until mastery

Motivation

- rms kams
- Prevalent use of mastery learning platforms
 - Gives multiple chances on assignments/exams
 - Focus on deliberate practice until mastery
- Varying implementations of resubmission policy
 - When unlimited attempts allowed, studies found students over-submit and engage in trial-and-error behavior
 - Application of regression penalties have found less guessing, but negatively creates exam anxiety

Motivation

- rms kams
- Prevalent use of mastery learning platforms
 - Gives multiple chances on assignments/exams
 - Focus on deliberate practice until mastery
- Varying implementations of resubmission policy
 - When unlimited attempts allowed, studies found students over-submit and engage in trial-and-error behavior
 - Application of regression penalties have found less guessing, but negatively creates exam anxiety
- Open questions:
 - How many attempts should be given?
 - How much guessing is actually there?
 - Our focus: Tests, max 3 attempts over 3 weeks, best score only

Our Research Questions

- 1. What are the general test-taking patterns and performance levels in this mastery learning environment?
 - Learning gains between pre vs. post-test?
 - When are test attempts made?
- 2. What can we observe about the behavior surrounding subsequent attempts?
 - Relationship to performance?
 - When are subsequent attempts made?
- 3. How might we model guessing behavior using attempt sequences and what are the implications?
 - Dynamic model?
 - How much guessing happened?

Goal: Improve course design

Related Work

- Large body of literature on designing assessments with MCQs [Fellenz, 2004; Harper, 2003]
- Low-stakes assessments refer to non-credit exams that typically measure student aptitude for cross-institutional comparison
 - Students not motivated and do not take them seriously
 [Noorbehbahani et al., 2022;
 Silm et al., 2013; Silm et al., 2020;
 Wise & DeMars, 2005]
 - Increased guessing behavior over the years
 [Must & Must, 2013]

• Solution behavior vs. rapid guessing behavior [Schnipke, 1995]

- Solution behavior vs. rapid guessing behavior [Schnipke, 1995]
- Rapid guessing behavior in low-stakes tests [Wise & Kong, 2005]

- Solution behavior vs. rapid guessing behavior [Schnipke, 1995]
- Rapid guessing behavior in low-stakes tests [Wise & Kong, 2005]
- Lots of work on measuring time to estimate when students are guessing [Wise, 2017; Kong et al., 2007]
 - Post-hoc analysis of visual inspection of response time distribution
 - Calculation of surface features of test item
 - Pre-defined threshold (3-5 seconds per item)
 - Mixture model of response times and accuracy
 - All involve item analyses and comparable to threshold method

- Solution behavior vs. rapid guessing behavior [Schnipke, 1995]
- Rapid guessing behavior in low-stakes tests [Wise & Kong, 2005]
- Lots of work on measuring time to estimate when students are guessing [Wise, 2017; Kong et al., 2007]
 - Post-hoc analysis of visual inspection of response time distribution
 - Calculation of surface features of test item
 - Pre-defined threshold (3-5 seconds per item)
 - Mixture model of response times and accuracy
 - All involve item analyses and comparable to threshold method

Guessing behavior associated with specific items

- Longer text or occurring later in the test [Wise et al., 2009; Demars, 2007]
 - Less guessing when item has table or image [Wise et al., 2009]

- Solution behavior vs. rapid guessing behavior [Schnipke, 1995]
- Rapid guessing behavior in low-stakes tests [Wise & Kong, 2005]
- Lots of work on measuring time to estimate when students are guessing [Wise, 2017; Kong et al., 2007]
 - Post-hoc analysis of visual inspection of response time distribution
 - Calculation of surface features of test item
 - Pre-defined threshold (3-5 seconds per item)
 - Mixture model of response times and accuracy
 - All involve item analyses and comparable to threshold method

Guessing behavior associated with specific items

- Longer text or occurring later in the test [Wise et al., 2009; Demars, 2007]
 - Less guessing when item has table or image [Wise et al., 2009]
- Unaware of work on modeling guessing behavior when tests have repetition or longer test-taking windows (common to mastery learning)

Course Context

- Third-year undergrad Human-Computer Interaction (HCI) course with diverse student backgrounds
- 10 modules, each with:
 - Pre-test
 - Content
 - Tutorial activity
 - Group activity
 - Post-test

 Pre-Test
 Lesson
 Tutorial Activity
 Main Activity
 Post-Test

Module Structure

- Participants:
 - Winter 2021: 160 students (29 females; 131 males)
 - Winter 2022: 199 students (29 females, 170 males)
 - Total: 359 students

Data

- Total 104 questions in 20 tests
 - Average 5 questions per test
 - Most questions were MCQ (~70 words)
 - Most questions had 4 response options (~33 words)
 - Among these, 37 questions had images and 4 had tables
 - Guessing is likely due to knowledge gaps rather than boredom
- Delivered with all questions at once on Canvas LMS

- Could not get item-level statistics

• Overall performance improvement?

Significant improvement in 2021

• Learning gains per module?

• When do students take tests?

• Submission time relative to deadline?

Many A students start early, but not all. Most low-performing students start close to the deadline.

• Are subsequent attempts dependent on performance?

Most students who get 100% don't bother taking another attempt after. Students who only make one attempt tend to submit closer to the deadlines than students who stop early. 18

• If subsequent attempt is taken, is it due to an imperfect score?

Some students who get perfect still make a subsequent attempt. 18-100% of the instances result in a lower mark on the future attempt. Suggests exploratory learning behavior.

• When are subsequent attempts made?

Students are not making full use of the 3-week window.

Hours apart between attempts?

As: From A1 to A2 As: From A2 to A3 Bs: From A1 to A2 Bs: From A2 to A3 Cs: From A1 to A2 Cs: From A2 to A3 Ds: From A1 to A2 Ds: From A2 to A3 Fs: From A1 to A2 Fs: From A2 to A3 Pre-Test Attempt Transition Per Grade Band

Median of 6 minutes between attempts.

Post-Test Attempt Transition Per Grade Band

• Hours apart between attempts?

Pre-Test Attempt Transition Per Grade Band

High-performing students reflect between A1 and A2 on pre-tests.

• Hours apart between attempts?

As: From A1 to A2 As: From A2 to A3 Bs: From A1 to A2 Bs: From A2 to A3 Cs: From A1 to A2 Cs: From A2 to A3 Ds: From A1 to A2 Ds: From A2 to A3 Fs: From A1 to A2 Fs: From A2 to A3 Pre-Test Attempt Transition Per Grade Band

F-students are wheel spinning on post-tests.

 How might we model trial-and-error sequences?

K-medoids clustering by test type and grade based on 1,000 trials. Model: Threshold of 6-minutes and subsequent decrease in performance. ²⁴

• How much guessing is present?

Module Test Grade Guesses Improvements Regression **Trial-and-Errors** Totals 3 **Pre-Test** Α 88 13.8% 31 318 (89.1%) 34 В 20 13 10.0% 19 33 (9.2%) С 0 0% 0 2 (0.6%) 1 D 2 (0.6%) 2 1 30.0% 2 F 3 0% 2 (0.6%) 1 1 All 106 (29.7%) 57 (16.0%) 53 (14.8%) 357 Post-Test Α 3 22 112 14.3% 307 (86.7%) 20 В 9 14.5% 25 (7.1%) 16 13 С 20.0% 16 (4.5%) 11 7 10 D 10.0% 2 4 (1.1%) 1 1 F 1 10.0% 2 (0.6%) 1 1 All 52 (14.7%) 45 (12.7%) 130 (36.7%) 354 **Pre-Test** 10 Α 12.9% 160 (82.1%) 10 51 10 В 12 10.0% 11 (5.6%) 3 9 С 19 20.0% 24 (12.31%) 11 13 D 0% 0 0 0 0 F 0 0 0% 0 0 All 41 (21.0%) 32 (16.4%) 65 (33.3%) 195 10 **Post-Test** Α 53 12.5% 10 176 (91.2%) 10 В 6 6 10.0% 5 8 (4.2%) С 40.0% 5 6 (3.1%) 6 3 D 4 0 20.0% 2 2 (1.0%) F 2 0.0% 1 (0.5%) 0 1 25 All 28 (14.5%) 62 (32.1%) 23 (11.9%) 193

Sample counts from two modules

Most

• How much guessing is present?

eventually Module Test Grade Guesses Improvements Regression **Trial-and-Errors** Totals 3 **Pre-Test** Α 34 88 13.8% 318 (89.1%) 31 get an A В 20 13 10.0% 19 33 (9.2%) С 0 0% 2 (0.6%) 1 0 D 2 1 30.0% 2 2 (0.6%) F 3 0% 2 (0.6%) 1 1 All 57 (16.0%) 106 (29.7%) 53 (14.8%) 357 Post-Test Α 3 22 112 14.3% 307 (86.7%) 20 В 14.5% 25 (7.1%) 16 9 13 С 20.0% 16 (4.5%) 11 7 10 D 10.0% 2 4 (1.1%) 1 1 F 1 10.0% 2 (0.6%) 1 1 All 52 (14.7%) 45 (12.7%) 130 (36.7%) 354 **Pre-Test** 10 Α 12.9% 160 (82.1%) 10 51 10 В 12 10.0% 11 (5.6%) 3 9 С 19 20.0% 13 24 (12.31%) 11 D 0% 0 0 0 0 F 0 0 0% 0 0 All 41 (21.0%) 32 (16.4%) 195 65 (33.3%) 10 **Post-Test** Α 53 12.5% 10 176 (91.2%) 10 В 6 6 10.0% 5 8 (4.2%) С 40.0% 5 6 (3.1%) 6 3 D 4 0 20.0% 2 2 (1.0%) F 2 0.0% 1 (0.5%) 0 1 26 All 28 (14.5%) 62 (32.1%) 23 (11.9%) 193

• How much guessing is present?

Lower

Module	Test	Grade	Guesses	Improvements	Regression	Trial-and-Errors	Totals	proportion
3	Pre-Test	Α	34	88	13.8%	31	318 (89.1%)	of auesses
		В	20	13	10.0%	19	33 (9.2%)	• •
		С		1	0%	0	2 (0.6%)	IN A'S
		D	2	1	30.0%	2	2 (0.6%)	
		F	1	3	0%	1	2 (0.6%)	
		All	57 (16.0%)	106 (29.7%)		53 (14.8%)	357	
3	Post-Test	Α	22	112	14.3%	20	307 (86.7%)	
		В	16	9	14.5%	13	25 (7.1%)	Overall:
		С	11	7	20.0%	10	16 (4.5%)	8% in A's
		D	2	1	10.0%	1	4 (1.1%)	070 1117(3
		F	1	1	10.0%	1	2 (0.6%)	VS.
		All	52 (14.7%)	130 (36.7%)		45 (12.7%)	354	18 61%
10	Pre-Test	Α	10	51	12.9%	10	160 (82.1%)	40-01/0
		В	12	3	10.0%	9	11 (5.6%)	in others
		С	19	11	20.0%	13	24 (12.31%)	
		D	0	0	0%	0	0	
		F	0	0	0%	0	0	
		All	41 (21.0%)	65 (33.3%)		32 (16.4%)	195	
10	Post-Test	Α	10	53	12.5%	10	176 (91.2%)	Total:
		В	6	6	10.0%	5	8 (4.2%)	12 00/
		С	6	3	40.0%	5	6 (3.1%)	13.8%
		D	4	0	20.0%	2	2 (1.0%)	auesses
		F	2	0	0.0%	1	1 (0.5%)	27
		All	28 (14.5%)	62 (32.1%)		23 (11.9%)	193	

How much guessing is present?

quesses Module Test Grade Guesses Improvements Regression **Trial-and-Errors** Totals 3 **Pre-Test** Α 34 88 13.8% 318 (89.1%) 31 in one В 20 13 10.0% 19 33 (9.2%) attempt С 0 0% 2 (0.6%) 1 0 D 2 (0.6%) 2 1 30.0% 2 F 3 0% 2 (0.6%) 1 1 All 106 (29.7%) 57 (16.0%) 53 (14.8%) 357 Post-Test Α 3 22 14.3% 307 (86.7%) 112 20 В 14.5% 25 (7.1%) 16 9 13 С 20.0% 16 (4.5%) 11 7 10 D 10.0% 2 4 (1.1%) 1 1 F 1 10.0% 2 (0.6%) 1 1 All 52 (14.7%) 45 (12.7%) 130 (36.7%) 354 10 **Pre-Test** Α 12.9% 160 (82.1%) 10 51 10 В 12 11 (5.6%) 3 10.0% 9 С 19 24 (12.31%) 11 20.0% 13 D 0 0 0% 0 0 F 0 0 0% 0 0 All 41 (21.0%) 65 (33.3%) 32 (16.4%) 195 10 **Post-Test** Α 53 12.5% 10 176 (91.2%) 10 В 6 6 10.0% 5 8 (4.2%) С 40.0% 5 6 (3.1%) 6 3 D 20.0% 4 0 2 2 (1.0%) F 2 0.0% 1 (0.5%) 0 1 28 All 28 (14.5%) 62 (32.1%) 23 (11.9%) 193

Multiple

Statistically significant improvement on overall course grade over previous years

- Pre-test/post-test learning gains in certain modules
- Repeated attempts to get full marks

Statistically significant improvement on overall course grade over previous years

- Pre-test/post-test learning gains in certain modules
- Repeated attempts to get full marks

Exploratory learning behavior observed in use of subsequent attempts

Statistically significant improvement on overall course grade over previous years

- Pre-test/post-test learning gains in certain modules
- Repeated attempts to get full marks

Exploratory learning behavior observed in use of subsequent attempts

Not exhibiting rapid guessing behavior, but students are not taking full advantage of the 3-week window

Statistically significant improvement on overall course grade over previous years

- Pre-test/post-test learning gains in certain modules
- Repeated attempts to get full marks

Exploratory learning behavior observed in use of subsequent attempts

- Not exhibiting rapid guessing behavior, but students are not taking full advantage of the 3-week window
 - Possible to develop dynamic model to detect guessing behavior
 - When combined with performance prediction, model can also detect wheel spinning behavior and offer adaptive help
 - However, false positives and false negatives can occur in the model Same limitation in the literature

Conclusions & Future Work

• Summary:

FUTURE

- Analyzed learning behavior in test-taking context with multiple attempts (max = 3)
- Proposed threshold model to quantify guessing behavior

- Compare to other models of guessing behavior
- Analyze idiosyncratic behavior (per person, per test, per concept)
- Improve module and assessment design
- Extend to contexts with other test types and assignment work