A Methodological Framework for Decision-Theoretic Software Customization Assistance

PhD Thesis

Bowen Hui
Department of Computer Science, University of Toronto
June 15th 2011
Need for Software Customization

• One-size-fits-all:
 – Cluttered interfaces, *bloat*-ware
 – *Dissatisfied* users
 – Most affected users
 • People with cognitive, sensory, motor impairments
 • Elderly/Children
 • Novices

• Recognize varying user needs and preferences
Interface Customization

• Objectives
 – Minimize user effort
 – Maximize interaction experience

<table>
<thead>
<tr>
<th>Commercial Apps</th>
<th>Research Apps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows “Start” menu</td>
<td>Auto meeting scheduler</td>
</tr>
<tr>
<td>Mini toolbar in Office 2007</td>
<td>Folder prediction</td>
</tr>
<tr>
<td>Auto text completions</td>
<td>Adaptive menus</td>
</tr>
</tbody>
</table>

• Different benefits and costs involved
Where do I start?

– Which existing research results can I draw upon?
– What are components in such a system?
– What steps are involved?
Thesis Contributions

• Decision-theoretic framework and guidelines
 – Techniques from interdisciplinary fields
 – Data collection, simulation testing, user evaluation

• Formal model of user types, characteristics, goals
 – Probabilistic models
 – Fast, online inference
 – Explains individual preferences

• Formal model of interaction cost
 – Models of interaction factors
 – Account for objective and subjective utility
 – Characteristics parameters to capture evolving preferences
 – New method for eliciting experienced utility
What aspects of the system should I make adaptive?

- Which tasks do users need help with?
- How do I model individual differences?
- What does the system need to know?
Thesis Contributions

• Decision-theoretic framework and guidelines
 – Techniques from interdisciplinary fields
 – Data collection, simulation testing, user evaluation

• Formal model of user types, characteristics, goals
 – Probabilistic models
 – Fast, online inference
 – Explains different interaction preferences

• Formal model of interaction cost
 – Models of interaction factors
 – Account for objective and subjective utility
 – Characteristics parameters to capture evolving preferences
 – New method for eliciting experienced utility
How do I know if it works?

– For different user groups?
– Can I anticipate “impact” before adapting the interface?
– What if user preferences change over time?
Thesis Contributions

• Decision-theoretic framework and guidelines
 – Techniques from interdisciplinary fields
 – Data collection, simulation testing, user evaluation

• Formal model of user types, characteristics, goals
 – Probabilistic models
 – Fast, online inference
 – Explains individual preferences

• Formal model of interaction cost
 – Models of interaction factors
 – Account for *objective* and *subjective* utility
 – New method for eliciting *experienced* utility
 – Characteristics parameters to capture evolving preferences
Software Customization Assistance (SCA) Development Architecture
Software Customization Assistance (SCA) Development Architecture

User Information → Belief distribution → Action Selection

Aggregate Events

Application Interface

Observation

Event

Help Action

Goals, User Type, Mental Model

User Information

Action Selection

Help Action
SCA Development Architecture

- **User Characteristics Prediction**
- **User Goal Prediction**

Aggregate Events

Belief distribution

Action Selection

Help Action

Probabilistic inference, User modeling, Goal recognition

User

Goals, User Type, Mental Model
SCA Development Architecture

- User Characteristics Prediction
- User Goal Prediction
- Observation
- Aggregate Events
- Belief distribution
- Action Selection
- Help Action

Application Interface

Decision theory, HCI, Preference elicitation

Event

Help Action

Goals, User Type, Mental Model

User
Case Studies

Word completion [Hui & Boutilier 06; ACM Finals 07]
Bayesian user characteristics model

Adaptive menu [Hui et al. 09]
Probabilistic mental model

Typing [Hui et al. 08]
Occlusion model

Menu selection [Hui et al. 08]
Bloat model

Highlighting toolbar [Hui & Boutilier 08]
Goal model
Experential elicitation
Case Studies

Word completion [Hui & Boutilier 06; ACM Finals 07]

Bayesian user characteristics model
- Data collection: 45 users
- Simulation: Always, Never, MEU, Thresh
- Usability: 4 users
- Analysis: standard error, EM, KL-divergence, factor analysis

Adaptive menu [Hui et al. 09]

Probabilistic mental model
- Data collection: 48 users
- Simulation: Best-Static, Split-4, JES, WER(.1), WER(.5), WER(.9)
- Usability: 8 users
- Analysis: correlation, factorial ANOVA, regression (linear, log, Gaussian)

Typing [Hui et al. 08]

Oclusion model
- Data collection: 12 users
- Analysis: factor analysis, regression (linear, quadratic, cubic)

Menu selection [Hui et al. 08]

Bloat model
- Data collection: 12 users
- Simulation: Static, Random, MDP
- Analysis: standard error, factor analysis, regression (linear, quadratic)

Highlighting toolbar [Hui & Boutilier 08]

Goal model
- Data collection: *online-adaptation*
- Simulation: Static, Freq-Char, Freq-only, Goal-Char, Goal-only
- Usability: 12 users

Experienced utility elicitation
- Data collection: 38 users
- Analysis: t-test, Hotelling’s T2 test
Case Studies

Word completion [Hui & Boutilier 06; ACM Finals 07]

Bayesian user characteristics model
- Data collection: 45 users
- Simulation: Always, Never, MEU, Thresh
- Usability: 4 users
- Analysis: standard error, EM, KL-divergence, factor analysis

Adaptive menu [Hui et al. 09]

Probabilistic mental model
- Data collection: 48 users
- Simulation: Best-Static, Split-4, JES, WER(.1), WER(.5), WER(.9)
- Usability: 8 users
- Analysis: correlation, factorial ANOVA, regression (linear, log, Gaussian)

Typing [Hui et al. 08]

Occlusion model
- Data collection: 12 users
- Analysis: factor analysis, regression (linear, quadratic, cubic)

Menu selection [Hui et al. 08]

Bloat model
- Data collection: 12 users
- Simulation: Static, Random, MDP
- Analysis: standard error, factor analysis, regression (linear, quadratic)

Highlighting toolbar [Hui & Boutilier 08]

Goal model
- Data collection: online-adaptation
- Simulation: Static, Freq-Char, Freq-only, Goal-Char, Goal-only
- Usability: 12 users

Experienced utility elicitation
- Data collection: 38 users
- Analysis: t-test, Hotelling’s T2 test
Case Studies

Word completion [Hui & Boutilier 06; ACM Finals 07]

Bayesian user characteristics model
- Data collection: 45 users
- Simulation: Always, Never, MEU, Thresh
- Usability: 4 users
- Analysis: standard error, EM, KL-divergence, factor analysis

Adaptive menu [Hui et al. 09]

Probabilistic mental model
- Data collection: 48 users
- Simulation: Best-Static, Split-4, JES, WER(.1), WER(.5), WER(.9)
- Usability: 8 users
- Analysis: correlation, factorial ANOVA, regression (linear, log, Gaussian)

Typing [Hui et al. 08]

Occlusion model
- Data collection: 12 users
- Analysis: factor analysis, regression (linear, quadratic, cubic)

Menu selection [Hui et al. 08]

Bloat model
- Data collection: 12 users
- Simulation: Static, Random, MDP
- Analysis: standard error, factor analysis, regression (linear, quadratic)

Highlighting toolbar [Hui & Boutilier 08]

Goal model
- Data collection: *online-adaptation*
- Simulation: Static, Freq-Char, Freq-only, Goal-Char, Goal-only
- Usability: 12 users

Experienced utility elicitation
- Data collection: 38 users
- Analysis: t-test, Hotelling’s T2 test
Case Studies

Word completion [Hui & Boutilier 06; ACM Finals 07]

Bayesian user characteristics model
- Data collection: 45 users
- Simulation: Always, Never, MEU, Thresh
- Usability: 4 users
- Analysis: standard error, EM, KL-divergence, factor analysis

Adaptive menu [Hui et al. 09]

Probabilistic mental model
- Data collection: 48 users
- Simulation: Best-Static, Split-4, JES, WER(.1), WER(.5), WER(.9)
- Usability: 8 users
- Analysis: correlation, factorial ANOVA, regression (linear, log, Gaussian)

Typing [Hui et al. 08]

Occlusion model
- Data collection: 12 users
- Analysis: factor analysis, regression (linear, quadratic, cubic)

Menu selection [Hui et al. 08]

Bloat model
- Data collection: 12 users
- Simulation: Static, Random, MDP
- Analysis: standard error, factor analysis, regression (linear, quadratic)

Highlighting toolbar [Hui & Boutilier 08]

Goal model
- Data collection: online-adaptation
- Simulation: Static, Freq-Char, Freq-only, Goal-Char, Goal-only
- Usability: 12 users

Experienced utility elicitation
- Data collection: 38 users
- Analysis: t-test, Hotelling’s T2 test
Findings – Char. Model

• **Inference is feasible**
 – 36 user types
 – Convergence between 20-150 words
 – System behaviour adapts to user characteristics

• **Users perceive help utility**
 – Joint expected savings vs. bigrams (ML)
 • ~2% more exact word matches
 • ~11% more character savings
 • *Greedy*: ~6.4% more character savings
 – Users accept 20% *inexact* matches

E.g., “the nu”:
- number
- nuclear
- nurses
Findings – Goal Model

• Adaptive help saves user effort
 – Average event reduction
 Freq: 13%
 Goal: 22%
 Goal-Char: 21% (w.r.t. NeverHelp)
 – % Suggestions accepted
 Goal: 3.5x
 Goal-Char: 3.3x (w.r.t. Freq)

• Users like Goal/Goal-Char better than baseline
 – Personalization and Helpfulness:
 Goal >> Freq (p < 0.05)
 Goal-Char >> Freq (p < 0.05)
 – Incremental inference more suited for sequential task
Summary

• Intelligent assistance as decision-theoretic planning problem
 – Propose POMDP-SCA framework
 – Model both user characteristics and user goals

• Formal user models and parameter acquisition experiments
 – Incorporate user behaviour and feedback
 – Explain interaction preferences
 – Monitor changes in characteristics over time
 – Recognize personalized goals

• Learning interaction preferences
 – Learn interaction cost models
 – Trade off adaptation benefits with interaction costs
 – Elicit experiential preferences
 – Use joint action selection for wider coverage of true goal