Engaging Higher Order Thinking Skills with a Personalized Physics Tutoring System

Matthew Bojey1, Dr. Bowen Hui1 & Dr. Robert Campbell2
1. Department of Computer Science, University of British Columbia, 2. Faculty of Education, University of British Columbia

Research Goals
- Identify student weaknesses
- Offer individualized help
- Increase student confidence, engagement and performance in Physics, specifically Kirchhoff’s Rules

Pedagogical Design
- Four modes design based on Bloom’s Taxonomy
- Advanced modes designed to elicit higher order thinking skills
- Each mode involves exercises with three levels of difficulty
- Users placed into most appropriate mode, but has control to opt out

System Architecture
- Designed with 3 modules:
 - Domain – Physics content, solution graphs
 - Student – User knowledge and attitude, behavioural observations
 - Tutor – Expected utility calculations for best action

Student Module
- Formalized as a dynamic Bayesian network
- Models student mastery as well as attitudes
- Applies clique inference to estimate Pr(Knowledge,) and Pr(Neediness,)

Domain Module
- Encodes Physics problems as solution graphs
- Checks student answers to identify types of mistakes present

Tutor Module
- Uses information from other modules to find how to help
- Chooses from 3 possible actions:
 - Offer context-sensitive hint
 - Offer full explanation
 - Do nothing
- Uses maximum expected utility to make decisions

Pilot Study
- Tested with students enrolled in summer offering of PHYS 122
- Showed increase in student interest and confidence
- Knowledge gains: more practice leads to fewer mistakes

Simulation
- Tested ability to support different student types

Acknowledgements
- All study participants
- Irving K. Barber School Undergraduate Research Endowment Fund
- Dr. Jake Bobowski, Hiroko Nakahara, and Dr. Jon Hopkinson