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Skills analysis in economics, education, policy making
— Understanding economic needs
— Observing and forecasting skill trends
— Aligning industry needs and training
— Developing re-skilling programs
— Ministries push towards competency based education

Recent interest from computer science
— Fast-changing skills
— Role in developing scalable solutions

Our goal: To develop scalable approach for evaluating program
competencies

— Develop automatic skills extraction system
— ldentify skill gaps in a CS program
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Related Work

e Definition of “skill” [Green 2013;Payne 2017; Duckworth & Yaeger 2015]
— Cognitive and non-cognitive abilities
— Emotional abilities
— Discipline-specific behaviors and workplace contexts

» Skill assessments [Rios et al. 2020]
— Self-reported questionnaires, employer surveys
— Teacher/observer reports
— Performance tasks, job analysis data
— Expert theoretical synthesis

* Major approaches in skills analysis with labor market data (cf. paper)
— Content analysis coded by domain experts
— Automatic approach using keyword matching
— Domain and language knowledge via external resources
— Machine learning algorithms for generalizability
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Job Skills Landscape

* Occupational classification systems built by
government organizations (e.g., O*NET, [Peterson et al.
1995])

e Aligning supply of skills with demand for employment
[McGuinness et al. 2018]

e Changing skills in IT
— Across time [Todd et al. 1995; Smith & Ali 2014]
— Across career stages [Kappelman et al. 2016]
— Across company size [Nelson et al. 2007]
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Skill Gaps in CS Education

* Changes introduced by Industry 4.0 and transition to new

technologies, data analysis, design/research skills [da Motta
Reis et al. 2020;Pinzone et al. 2017]

* |Increase in digital divide may dampen participation by
females [West et al. 2019;Papyrina et al. 2021]

* |mpact within on curriculum [Patacsil & Tablatin 2017,
Radermacher et al. 2014;Borner et al. 2018; Restuccia 2019]

— Gap in student skills and industry needs

— CS: Prioritization in communication, testing, project experience,
problem-solving in practical settings, specialized tools

— Borner et al. used keyword matching to extract longest matching
skill from publication abstracts, course syllabi, job postings
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ML Techniques in Skills Analysis

* Beyond keywords/strict syntax
e Automatic extraction of skills

Specialized track in TREC (2005+) focus on expert search

LinkedIn [Skomoroch et al. 2012]: deep NLP analyses, clustering,
crowdsourcing

SKILL by CareerBuilder [Hoang et al 2015;Javed et al. 2017;Zhao et al.

2015]: skills taxonomy generation, deep NLP analyses, Wikipedia
categories

ScholarLens [Sateli et al. 2017]: extract competencies from
publications to create researcher profiles

Others [Bernabé-Moreno 2019; Gonzalez-Eras & Aguilar 2019]:
linguistic phrase structure, additional resources, clustering
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ML Techniques in Skills Analysis

* Beyond keywords/strict syntax
e Automatic extraction of skills

Specialized track in TREC (2005+) focus on expert search

LinkedIn [Skomoroch et al. 2012]: deep NLP analyses, clustering,
crowdsourcing

SKILL by CareerBuilder [Hoang et al 2015;Javed et al. 2017;Zhao et al.

2015]: skills taxonomy generation, deep NLP analyses, Wikipedia
categories

ScholarLens [Sateli et al. 2017]: extract competencies from
publications to create researcher profiles

Others [Bernabé-Moreno 2019; Gonzalez-Eras & Aguilar 2019]:
linguistic phrase structure, additional resources, clustering

» C(Classification of job skills

Skills database to explore employee turnover [Liu et al 2018]
WoLMIS [Boselli et al. 2018] classified job ads to occupational codes
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Our Methodology

* No fixed keywords or strict text format requirement
* Major steps:

— Seed phrases

— Preprocessing

— Linguistic patterns analysis

— ML text classification models

— Evaluation



Our Methodology

e Seed phrases

— Research database edgemap.ok.ubc.ca with 202 students in
Digital Citizenship course self-reported 1,966 skills

— Manually extracted skills from 1,700 job postings from
indeed.com

— Intercoder reliability (1°t: 82%, 2"9: 94% agreement)
— Result: 6,972 phrases with 4,886 skills and 2,086 non-skills



http://edgemap.ok.ubc.ca/
http://indeed.com/

Our Methodology

* Preprocessing
— Standard NLP steps to process job description sections

— Removed HTML tags, tokenization by punctuation and
conjunctions, removed stop words, lemmatization, POS

tagging



Our Methodology

* Linguistic patterns analysis
Linguistic Pattern Examples

Noun phrase Java, Microsoft Word, time management, strong programming skills
Verb/Gerund + Noun phrase | programming websites, design user interfaces
Noun phrase + Gerund server hosting, software testing
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Our Methodology

e ML text classification models

— Used seed phrases as a labeled dataset for text
classification

— Extracted all linguistic patterns from job postings
— Text classification models: Naive Bayes, SVM linear, k-NN



Our Methodology

e Evaluation
— 10-fold cross validation
— Measured accuracy, recall, precision, AUC



Text Classification Performance
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Analysis of Student Skills, University
Courses, and Jobs

e CSdiscipline case study
— 202 students with 1,966 skills
— 26 course syllabi in a CS program
— 13,493 software developer job ads

Students Courses Jobs

X X

m Hard Skills = Soft Skills = EDC m Hard Skills = Soft Skills = EDC m Hard Skills = Soft Skills = EDC




High-Level Findings

Software developer jobs demand mostly
technical skills

CS programs should incorporate more soft skills
Students have a high proportion of soft skills

Questions remaining:
— Do students have the soft skills that jobs need?
— Are courses teaching the hard skills that jobs need?
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Conclusions and Future Work

 Summary contributions and findings
— Auto-extract skills to analyze student skills, course
syllabi, job postings
— Within-sector analysis on programming jobs and

training provided curricular insights on CS
program



Conclusions and Future Work

* Limitations
— Job postings is a secondary data source
— Does not use external resource

— Student skills database contained more diverse
content than desired

— Syllabi content is a proxy to course competencies



Conclusions and Future Work

* Next steps
— Extend labeled dataset and retrain classifier
— Explore other text classification models
— Additional within-sector analyses



