Understanding the Data Needs for Developing a Computational Model of Team Dynamics

Novia Fan and Dr. Bowen Hui

Computer Science University of British Columbia

Motivation

- Effective teamwork enhances performance, collaboration, personal growth
 - Model process variables that explain underlying team dynamics [Kozlowski & Klein 2000]
 - Beyond outcome variables, e.g. team performance
 - Most team models are descriptive or derived through small empirical samples

VS.

Process

Motivation

- Effective teamwork enhances performance, collaboration, personal growth
 - Model process variables that explain underlying team dynamics [Kozlowski & Klein 2000]
 - Beyond outcome variables, e.g. team performance
 - Most team models are descriptive or derived through small empirical samples
- Our vision: Support management process with alerts of problematic behaviors so to take interventions early

K

Outcome

VS.

Process

Related Literature Quantitative **Team Stages Team Diagnosis Our Synthesis of Team Characteristics Team Concepts**

Team Stages

- Stages of Development [Tuckman 1965; Tuckman & Jensen 1977]
- Two-Stage Group Development [Bushe & Coetzer 2007]

Quantitative Team Diagnosis

Team Characteristics

Our Synthesis of Team Concepts

Team Stages

- Stages of Development [Tuckman 1965; Tuckman & Jensen 1977]
- Two-Stage Group Development [Bushe & Coetzer 2007]

Quantitative Team Diagnosis

Team Characteristics

- GRIP shared mental model [Raue et al. 2013]
 - [Katzenback & Smith 1993] skills, accountability, commitment
- safety, structure, meaning [Google 2023]
- interdependence, conflict res, safety, structure
 - [Mickan & Rodger 2000] 7 org structure, 4 indiv, 7 team processes
- social loafing, interdependence, trust, shared mental model [Borrego et al. 2013] [Lencioni & Stransky 2002]
- Lencioni model 5 dysfunctions

Our Synthesis of Team Concepts

Team Stages

- Stages of Development [Tuckman 1965; Tuckman & Jensen 1977]
- Two-Stage Group Development [Bushe & Coetzer 2007]

Team Characteristics

- GRIP shared mental model [Raue et al. 2013]
- [Katzenback & Smith 1993]
 skills, accountability, commitment
- safety, structure, meaning [Google 2023]
- interdependence, conflict res, safety, structure
- Mickan & Rodger 2000]
 7 org structure, 4 indiv, 7 team processes
- social loafing, interdependence, trust, shared mental model [Borrego et al. 2013] [Lencioni & Stransky 2002]
- Lencioni model 5 dysfunctions

Quantitative Team Diagnosis

- CARE model [O'Neill et al. 2018; O'Neill et al. 2020]
- performance, behavior, attitude, style, corporate culture [Ross et al. 2008]

Our Synthesis of Team Concepts

Team Stages

- Stages of Development [Tuckman 1965; Tuckman & Jensen 1977]
- Two-Stage Group Development [Bushe & Coetzer 2007]

Team Characteristics

- GRIP shared mental model [Raue et al. 2013]
- [Katzenback & Smith 1993]
 skills, accountability, commitment
- safety, structure, meaning [Google 2023]
- interdependence, conflict res, safety, structure
- Mickan & Rodger 2000]
 7 org structure, 4 indiv, 7 team processes
- social loafing, interdependence, trust, shared mental model [Borrego et al. 2013] [Lencioni & Stransky 2002]
- Lencioni model 5 dysfunctions

Quantitative Team Diagnosis

- CARE model [O'Neill et al. 2018; O'Neill et al. 2020]
- performance, behavior, attitude, style, corporate culture [Ross et al. 2008]

Our Synthesis of Team Concepts

- shared mental model
- trust
 - safety, belonging, commitment, ...
- interdependence
- motivation
- diversity of skills
- external factors

Team Stages

- Stages of Development [Tuckman 1965; Tuckman & Jensen 1977]
- Two-Stage Group Development [Bushe & Coetzer 2007]

Team Characteristics

- GRIP shared mental model [Raue et al. 2013]
- [Katzenback & Smith 1993]
 skills, accountability, commitment
- safety, structure, meaning [Google 2023]
- interdependence, conflict res, safety, structure
- Mickan & Rodger 2000]
 7 org structure, 4 indiv, 7 team processes
- social loafing, interdependence, trust, shared mental model [Borrego et al. 2013] [Lencioni & Stransky 2002]
- Lencioni model 5 dysfunctions

Quantitative Team Diagnosis

- CARE model [O'Neill et al. 2018; O'Neill et al. 2020]
- performance, behavior, attitude, style, corporate culture [Ross et al. 2008]

Our Synthesis of Team Concepts

- shared mental model
- trust
 - safety, belonging, commitment, ...
- interdependence
- motivation
- diversity of skills
- external factors

Bayesian Network (BN)

- A BN is a directed acyclic graph of variables X₁, X₂, ..., X_n – Nodes represent random variables

 - Edges represent causal relationships
 - Each node X. has a conditional probability table (CPT) in the form Pr(X, | Parents(X,))

Model feature: BNs can represent uncertain world knowledge intuitively to support causal reasoning

Bayesian Network (BN)

- A BN is a directed acyclic graph of variables X₁, X₂, ..., X_n - Nodes represent random variables

 - Edges represent causal relationships
 - Each node X. has a conditional probability table (CPT) in the form Pr(X, | Parents(X,))
- **Inference** allows us to estimate the likelihood of a variable value given observed variable outcomes
 - "If the student is highly committed, how likely are they to take charge?"
 - Represents system's current belief about the student

Dynamic Bayesian Network (DBN)

- An extension of a BN that describes causal dependencies over time
- A 2-stage DBN over variables X consists of:
 - A set of **hidden variables** S, where $S \subset X$
 - A set of **observable variables** O, where $O \subset X$
 - Two discrete time slices: t-1 and t

Dynamic Bayesian Network (DBN)

- An extension of a BN that describes causal dependencies over time
- A 2-stage DBN over variables X consists of:
 - A set of **hidden variables** S, where $S \subset X$
 - A set of **observable variables** O, where $O \subset X$
 - Two discrete time slices: t-1 and t
- This model is a first order Markov process: Pr(U_t | U₁₊₁) = Pr(U_t | U_{t-1})

A DBN Model of Commitment

Closer Look at the Commitment BN

literature: "feeling of responsibility for the team's work"

Example CPTs for Commitment

- Each row is a probability distribution
 - When parent value is known, what is the child distribution?

Pr(TakesCharge_t|Commitment_t):

	TakesCharge_t = true	TakesCharge_t = false	
Commitment_t = low	0.01	0.99	TakesCharg
Commitment_t = medium	0.20	0.80	_
Commitment_t = high	0.90	0.10	

Commitment

Example CPTs for Commitment

- Each row is a probability distribution
 - When parent value is known, what is the child distribution?

Pr(TakesCharge_t|Commitment_t):

	TakesCharge_t = true	TakesCharge_t = false	
Commitment_t = low	0.01	0.99	TakesCharge
Commitment_t = medium	0.20	0.80	-
Commitment_t = high	0.90	0.10	

- Parameters are currently handcrafted
 - Define user types and replicate descriptive theoretical behavior

Commitmen

Simulation Setup

- Python implementation with pgmpy package
 - Spans over 13-weeks
 - Results averaged over 100 trials
- Experiments:
 - #1: Evaluate inference accuracy
 - Create fixed behaviors of "prototypes"
 - Fed behaviors into DBN to infer commitment level
 - Check alignment with expectations of prototypes
 - #2: "Sensitivity analysis" of behavior distributions
 - Generated a series of behaviors from DBN
 - Check alignment to High vs. Low commitment individuals

Student Prototypes

- Student A:
 - Gets all tasks done on time and helps others
- Student B:
 - Always positive, initiates conversations (~2 wks), initiates meetings (~3 wks)

Student Prototypes

- Student A:
 - Gets all tasks done on time and helps others
- Student B:
 - Always positive, initiates conversations (~2 wks), initiates meetings (~3 wks)
- Student C:
 - Gets some tasks done, helps others superficially (~3 wks)
- Student D:
 - Gets some/no tasks done, work only partially accepted by others

Student Prototypes

- Student A:
 - Gets all tasks done on time and helps others
- Student B:
 - Always positive, initiates conversations (~2 wks), initiates meetings (~3 wks)
- Student C:
 - Gets some tasks done, helps others superficially (~3 wks)
- Student D:
 - Gets some/no tasks done, work only partially accepted by others
- Student F:
 - Never gets work done, always negative

Simulation Setup

- Python implementation with pgmpy package
 - Spans over 13-weeks
 - Results averaged over 100 trials
- Experiments:
 - #1: Evaluate inference accuracy
 - Create fixed behaviors of "prototypes"
 - Fed behaviors into DBN to infer commitment level
 - Check alignment with expectations of prototypes
 - #2: "Sensitivity analysis" of behavior distributions
 - Generated a series of behaviors from DBN
 - Check alignment to High vs. Low commitment individuals

relation with others plays a less important role

more neutral or negative behaviors

Data Needs

- Design controlled experiments or collect field data to populate CPTs
 - Every CPT is a quantitative relationship between two or more variables

Survey: State your commitment level. How likely are you to [type]

> Survey: When you want to <u>[type]</u>, how likely are you to [action] Empirical: Knowing you are <u>[type]</u>, count instances of each action

Future Work

 Conducting data collection experiments on building Activity and observable Project Management relationships

Future Work

- Conducting data collection experiments on building Activity and observable Project Management relationships
- Further investigation on observing natural behaviors for Interaction
 - Most teamwork interactions do not happen in class
 - Studies that work on this are conducted in controlled, short settings

Future Work

- Conducting data collection experiments on building Activity and observable Project Management relationships
- Further investigation on observing natural behaviors for Interaction
 - Most teamwork interactions do not happen in class
 - Studies that work on this are conducted in controlled, short settings
- Long-term goal: ongoing team monitoring
 - Recall our vision: Support management process with alerts of problematic behaviors so to take interventions early