
Examining the Effect of Collaboration in an Online
Learning Environment

Matthew Bojey
University of British Columbia

3333 University Way
Kelowna B.C.

1-250-212-7508
mbojey@gmail.com

ABSTRACT
At UBC Okanagan, an introductory Java programming course,
COSC 121, is required for many Science students. In this course,
several concepts are abstract and non-trivial for students to
master. One of the concepts is a linked list, a data structure with
interconnected nodes. In this project I designed and implemented
a web based system to help students learn about linked lists in a
collaborative setting. The system presents a visualization of
linked lists and asks students to solve several exercises related to
the operations on the data structure such as adding, deleting and
reordering nodes. Students can choose to solve questions in the
system either alone or in pairs using a synchronized online
workspace and private chat room. The study focuses on
examining the effect of student collaboration in Computer Science
education piloted in the current COSC 121 class with
approximately 120 students. In addition to finding significant
performance and confidence increases in students, the project
found that while each attempt takes longer collaboratively it is
more efficient for students to solve these problems in pairs than
alone. The system discussed in this paper can be found at
http://young-refuge-6221.herokuapp.com/

Categories and Subject Descriptors
K.3.1 [Computers And Education]: Computer Uses in
Education – Collaborative Learning. K.3.2 [Computers And
Education]: Computer and Information Science Education –
Computer Science Education.

General Terms
Design, Experimentation, Human Factors.

Keywords
Computer Science Education, Linked Lists, Abstract Data Types,
Collaborative Learning, System Evaluation.

1. INTRODUCTION
In general Science education many students are required to take a
course in introductory programming. These courses cover many

concepts including basics of variable assignment, control and
conditional statements, object oriented programming and data
structures. There has been extensive amounts of work done on
ways to aid students in learning these and other related concepts
[1]. Even with this existing work, for many students these more
abstract concepts such as object oriented programming and data
structures are challenging to understand and non-trivial to master.

I aim to help students understand one such data structure concept,
linked lists. Linked lists are a data structure composed of
interconnected nodes where each node contains data and one or
more pointers to another node in the list. This project focuses on
singly linked lists where each node only contains a pointer to the
next node in the list. The list also has a head that points to the
front of the list so that as programmers work with the list they
have a place to start traversing the list.

In this project I designed and implemented a web based system
for students to practice various operations on linked lists. The
system was written using Ruby on Rails for the back end with
JavaScript, HTML and CSS as the front end. The system allows
students to work with graphical representations of lists and focus
more on the conceptual ideas being operations rather than dealing
with the details involved in programming them. The system also
behaves how one would expect when programming in Java with
an automated “garbage collector” that removes nodes from the list
when there are no references to the node from elsewhere in the
list. As the system is designed to be used by students who are still
learning the material, the students may attempt a question as many
times as they need in order to get a correct answer.

To examine the effect of collaboration as students use the system,
I have two conditions during evaluation of the system, individual
work and pair work. When students are working in pairs the
actions of one student are reflected on the screen of the other
student so that they are aware of what their partner is doing. There
is also a built in private chat room so that partners can
communicate via text chat. The system discussed in this paper
can be found at http://young-refuge-6221.herokuapp.com/

2. RELATED WORK
As mentioned previously, there has been a large body of work
done in Computer Science Education [1], of particular interest to
this project is work done with linked lists and work done with
collaboration. I will examine work done in these two areas next.
To the best of my knowledge, there are no existing works on
collaborative linked list education.

2.1 Linked Lists
Due to the challenging abstract nature of the linked list concept,
existing work has focused on providing a graphical interface for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

students to interact with. One such program is iList, a program
designed to instruct students on how to perform operations on
linked lists [2]. The program combines graphical representations
of lists and syntactically correct code to help students master the
concept as well as become successful at implementing it. The
focus of the program is to try to closely replicate the behaviors
and outcomes of a human tutor by offering different levels of
feedback to the user. The system has been tested and has been
found to be effective and perceived to be useful and interesting by
students. While the system uses graphical representations similar
to the system I have designed they have no collaborative aspect to
the system as all work is done individually. They did have a
connection between the diagrams and the final code, which I did
not have.
Another program that focuses on the graphical representation of
lists to help explain the concept is Java Visual Automated Linked
List (JVALL) [3]. This program works directly with the Java
LinkedList class to show animations of what changes are
happening to the data structure when different methods are run.
The program supports many of the methods from the LinkedList
class so that students can understand what is happening when they
perform any operation on a linked list in their programs. This
program uses the graphical representation to help reinforce the
concepts of linked lists but it does not provide any exercises for
students to work through like my system does.
A third program that uses the graphical representation of allow
students to work with linked lists is presented by Panoiu et al. [4].
In this system, students work to perform basic operations on
linked lists such as adding and removing nodes. This program is
written as a stand-alone desktop application and does not support
any collaborative aspects like the system implemented in this
project does. This system, like iList does not support any
collaborative work between students like my system does.

2.2 Collaborative Education
A number of studies have investigated the impact or collaboration
in Computer Science education [5, 6. 7, 8]. Many of these studies
involve splitting students into small groups and presenting them
with problems similar to those that they would find in class or
laboratory activities. In general, these activities do not allow
students to directly work with each other and more encourage
taking turns working on the problem and providing feedback to
group mates. This is very different from my system where
students work directly and synchronously with each other solving
the same problem in tandem.

Collaborative education extends beyond the domain of just
Computer Science and beyond the digital realm as well. In
general, collaborative learning involves students working together
to understand material or complete a task [9, 10]. There has been
a large body of evidence that suggests that collaborative learning
has a wide range of benefits including improved student
performance, more positive attitudes towards the material and
increased student retention [9, 10]. This has lead to the
development of many computer systems to facilitate collaborative
learning. One such system is Lotfi Virtual Collaborative Learning
(Lotfi VCL) [11]. This system is a web-based system that was
designed to facilitate collaboration between students in a variety
of domains. While the system does not offer any domain specific
educational frameworks the collaboration it offers has significant
positive impacts on student engagement, attitude and
performance. In contrast with my system, which is designed
specifically for students learning about linked list, the Lotfi VCL is

much more a collaboration framework where instructors who wish
to use the framework develop domain specific information.

There has also been a large amount of work done on collaboration
in Computer Science education in the past. In a 1997 study by
Leidner and Fuller, it was shown that collaboration helped
students feel that they understood the material better and
increased interest in the material, specifically material in a
Management Information Systems course [12]. This was done by
allowing the students to form small groups to discuss the material
presented in class before requiring them to perform individual
assessments. However, this perceived understanding and
increased interest did not translate into increased performance on
the individual assessments. This study differs from my work as I
created specific activities that students can work through as
opposed to open discussion of small groups. Also, I limit the
group size to only pairs of students and not larger groups.

One recent study by Beck and Chizhik has focused on
collaboration in introductory Computer Science education [9]. In
this study students would work in small groups while the
instructor observes and at the end of the work sessions debriefs
with the group to discuss their success and potential
misunderstandings. The study showed significant increases in
many areas of student learning when using a collaborative
approach to Computer Science education as opposed to the typical
individual approach.

2.2.1 Pair Programming
A technique common in Computer Science that is related to
collaboration is pair programming. In pair programming, two
programmers work in tandem with one member of the team typing
the program or writing down a design while the other member is
asking questions, spotting errors or thinking of alternatives. The
roles are switched back and forth while the team works. This form
of collaboration has been found to be very effective in both
student and professional programmers [9]. While I do not enforce
students to follow this paradigm I do want to acknowledge the
existence and historical success of the style of pair collaboration.

3. LINKED LIST DOMAIN
As discussed above, a linked list is an abstract data type, a way to
represent data that has specific behaviors that can be expected by
an end user. The main idea behind a linked list is that items in the
list are “linked” and can be access sequentially. Each item in a list
is called a node. Each node contains some data, which can be
anything including integers, sentences, or characters, and a
pointer. The pointer is what links one node to the next in a list.
The pointer stores the address of the next node in the list and by
following the pointer one can reach the next node in the list. The
end of the list is represented by a null pointer, or a pointer that
points to nothing. A linked list starts with a list head. This is the
only reference to the rest of the list that a student will have as they
work with the list and serves as the starting point as the work
through a list. The list head will point to the first node in the list.
The typical graphical representation of a linked list is boxes and
arrows and that is what I will use here as well. A box that has two
sections represents a node. The blue section will represent the
data that is stored in the node and the red section will represent
the pointer. The pointers will either have an arrow pointing to the
next node or a null pointer represented by a ground symbol. I also
use a purple box to represent the list head. This structure can be

seen in Figure 1.

Figure 1: A graphical representation of a linked list with 2

nodes.
To effectively master linked lists students must be able to
understand the static representation of the data presented above as
well as be able to complete several operations on the data
structure. These operations can include adding a node, removing
a node, finding a node with a specific value, traversing all the
nodes in a list, or reordering the nodes in a list. These operations
involve a deep understanding of the underlying structure as well
as careful planning of the operations. In the process of
performing these operations students must mentally keep track of
where all the pointers in the list are pointing to and make sure that
they aren’t skipping over any nodes. In the Java programming
language this is especially important, as the garbage collector will
simply delete any nodes that don’t have anything pointing to them
during the process. This is why a graphical representation has
often been used and is so helpful to understanding the concepts
behind these operations. For example, see Figure 2 for the
process of adding a node to a list.

Figure 2 a): A node that will be inserted between the 2 nodes

in the existing list.

Figure 2 b): First I set the next pointer to the node that will

come after the node to be inserted.

Figure 2 c): Next I update the next pointer of the node that
will come before the node to be inserted.

Figure 2 d): Finally I have the list after the node has been

inserted.

4. SYSTEM DESIGN
As mentioned previously, the system was designed to be a web
application. The framework that was used was Ruby on Rails as
it facilitates a relatively easy and straightforward development
through the use of various publically available add-ons called
Gems. The system was designed with several features as well as
focusing on several operations involving linked lists.

4.1 System Features
In order to facilitate the individual and collaborative modes of the
system several features were required. Also, to help with
evaluation of the system several logging and reporting features
were developed as well.

4.1.1 User Accounts
In order to track students’ performance and be able to give them
credit for their work user accounts needed to be created. This was
done with the use of the Devise gem. The user accounts were also
monitored so that other users would know when a user was online
and available to collaborate with. This was done with the use of
Asynchronous JavaScript and XML (AJAX) to make a call from
the users browser to the server every 5 seconds to update that they
were online. Then when another user was checking who was
online, the system would look for all users who were update as
online less than 5 seconds ago to populate the list. All users were
required to create an account to use the system and prior to
creating an account were presented with terms of their use of the
system as per Research Ethics Board (REB) standards.

4.1.2 Tutorial
The first feature that a user would see when they begin using the
system is a tutorial. This tutorial was designed to familiarize the
user with how lists will be represented in the system. It gives a
rudimentary overview of what a list is and how is it represented
but it is not meant to replace classroom instruction. It is assumed
that students have been exposed to the concept of linked lists prior
to starting to use the system. The tutorial also gives students a
chance to play with the nodes and pointers in a list before
beginning the practice exercises.

4.1.3 Practice Questions
The main piece of the system is the practice questions that are
presented to the students. These questions can all be attempted
either individually or in pairs. The questions presented are similar
in scope to those in Figure 2 but cover different topics as shown in
Section 4.2. The question workspace is programmed in
JavaScript using the Kinetic.js open source library. The library
allows to the creation and manipulation of clickable and draggable
shapes within a certain workspace called a Scene. Each question

that a student works on creates a new Scene in the server database
and each Scene has associated Nodes and Actions. Each time that
a student performs an action, such as moving a node to another
location or adding a temporary variable to the scene, an AJAX
call is made to the server to update the current Scene in the
database. When a student feels that they have completed the
required steps in the questions they can submit the question and
the Scene is then checked for correctness. The Scene is checked
by first determining what question the student was working on
then checking to make sure that the criteria laid out by the
question is correct. For example, if the system were checking the
question presented in Figure 2 it would start by making sure that
there were 3 nodes in the list. Then it would make sure that the
nodes are in order. If either of these checks would fail, a
notification would be given to the student letting them know that
they have made a mistake and what that mistake is.

When a student is working on a question and they submit the
correct answer they receive 4 points if done individually and 5
points if done with a partner. Each practice question also has an
optional hint available and if the hint is used the student receives
only 2 points upon completing the question if they are working
individually or collaboratively. The student will receive 100% for
the activity after gaining 80 points. Students were allowed to
attempt a question as many times as they want with no penalty to
their score for incorrect answers. This is due to the fact that the
system was designed as a practice tool and not an evaluation tool.
Students were allowed to attempt questions in any order that they
choose. This scoring system was developed in collaboration with
the current instructor of COSC 121, the course that the system
was tested in. A full list of the questions presented in the system
can be seen in the Appendix.

The workspace as seen by the student while completing a question
can be seen in Figure 3.

Figure 3: The workspace as seen by a student when solving an

exercise.

4.1.4 Chat and Collaborative Exercises
When a student wants to work with a partner, they first find an
available partner from the online users. They then can work on
questions with their partner. While working on questions they can
also use a built in text chat system to discuss issues or ideas
related to the problem. This text chat is built so that when a
student sends a message, that message is sent to the server and a
new message is created in the database. Then every 5 seconds the
user’s browser will check to see if there are any new messages
sent from their partner but making an AJAX call to the database
and retrieving any new messages. These messages will then be
displayed to the user. In this way, the chat is not instant but with
only a 5 second delay user testing showed that this was not an
issue. The chat system can be seen in Figure 4.

Figure 4: The chat system interface.

When a student begins working on a question and they have
chosen a partner, an invitation to join will be sent to the partner.
Then partner can then accept the invitation and will be able to see
what the current user is working on. When one partner makes a
change to the Scene the other partner will see the change 1 second
later. This is done by having each partner constantly checking
with the database to make sure that they current version of the
Scene displayed on their screen is the most up to date possible.
As mentioned earlier, due to the fact that every action is recorded
to the database as it happens by each user then this look up
becomes very simple to implement with an AJAX call to get the
most current Scene and a JavaScript function to move the nodes
around on the screen in the Kinetic.js workspace. Currently, there
is no way for a user to know that their partner has selected a node
and plans to move it but this is an improvement that could be
made in the future.

4.1.5 Pre and Post Use Questionnaires
To evaluate student confidence and attitudes towards the material
pre and post use questionnaires were also developed. The pre use
questionnaire was presented to student before they began using
the system and students completed the post use questionnaire
when they were finished with the system. They post use
questionnaire could be completed at any time if the student
wanted to stop using the system before receiving full marks. In
addition to questions from the pre use questionnaire pertaining to
confidence and attitude the post use questionnaire also presented
questions about the usability of the system to the students.

4.2 Educational Design
The system was designed as a way for student to practice with the
concepts that they had been presented in class, it was not designed
to be the first and only experience students have with linked lists.
As such, the system was designed with 3 mains types of
questions, adding nodes, removing nodes and reordering lists.
Students were able to select any question to do at any time. The
interface presented to students to select a question is shown in
Figure 5.

Figure 5: The interface presented to students to select what

question to work on.

4.2.1 Adding Nodes
Students were presented with a choice of 9 questions related to
adding nodes. There were 3 sub-types of problem with 3
questions each: adding a node to the front of a list, adding a node
to the middle of a list, and adding a node to the end of a list. Each
question would contain a slight variation in things such as the
initial number of nodes in the list or the type of data stored in the
list. These variations were to help students see that the process of
adding a node to a list is independent of such factors and is the
same every time.

4.2.2 Removing Nodes
Students were also presented with a choice of 9 questions related
to removing nodes. There were 3 sub-types of problem with 3
questions each: removing a node from the front of a list, removing
a node from the middle of a list, and removing a node from the
end of a list. Again, each question would contain a slight
variation in things such as the initial number of nodes in the list or
the type of data stored in the list. Removing nodes from a list is
typically a harder question as it is easy to remove the entire list
and this difficulty is represented in the empirical results discussed
in Section 6.

4.2.3 Reordering Nodes
Students were presented with a choice of 6 questions related to
reordering nodes. There were 2 sub-types of problem with 3
questions each: reversing the order of a list and sorting a list
according to some ordering. Again, each question would contain
a slight variation in things such as the initial number of nodes in
the list or the type of data stored in the list. These were the most
difficult questions in the system, as the students would need to
keep track of several pointers that needed to be moved to order the
list properly. These exercises were designed to help students
realize that temporary variables may be needed to hold on to parts
of the list while they would work with the rest of the list. Again,
the empirical results show that these questions were indeed the
most difficult.

5. EVALUATION METHODOLOGY
Prior to testing with students, two primary rounds of testing were
completed. First user interface (UI) testing was done. This was
done to ensure that the interface was easy to use and made sense.
This was done with 2 students who had taken the course the
previous year so the material was not a challenge and they were
able to focus on the usability of the system. As a result of these
tests changes were made to the tutorial to more clearly explain the
representation of linked lists used in the system. These changes
were a more step-by-step introduction to the components of a
linked list and how they are represented in the system. An
interactive sandbox mode was also introduced in the tutorial so
that students can see how the addition or movement of nodes and
arrows works with the system. These changes made the students
able to focus on the material when they start working on the
problems and not need to learn the representation and interactions
present in the system. Also, the chat window was moved from the
bottom right corner to the bottom left corner as it was found to
obscure the workspace on smaller screens.
Secondly, a small pilot test was completed with several upper
level computer science students. Again, experienced students
were asked to participate, as they would be able to find flaws in
the system without having to worry about solving the problems
that were easy for them. These test involved 6 participants, 4 of
whom worked in pairs and 2 who worked alone. The participants

were able to find a few exceptional cases where the evaluation of
questions was incorrect as well as make suggestions to improve
the responsiveness of the chat and collaboration system. As a
result of these tests the verification issues were solved and the
students in the COSC 121 course could use a cleaner more
responsive system when they tested it. Removing the time
between updates when a partner would move a node in the linked
list changed the responsiveness. The chat was also made more
responsive by decreasing the time between calls to the database to
check for new messages from a partner.

As mentioned previously, the system was evaluated with the
current, Winter 2014 Term 2, class of COSC 121 at UBC
Okanagan. There were 120 students enrolled in the class and 67
chose to participant in the student. Of the 67 participants 16
worked in pairs and 51 worked individually. This was due to the
fact that the system was presented in class as an optional bonus
assignment. The system was presented to students online and
they were allowed to work on the system any time during the
week. Due to this open ended nature of the system use, which
was necessary to increase participation; we were not able to
structure the amount of students who would work collaboratively
or individually. There were no other options for participation as
lecture time was unavailable and lab sessions had very low
attendance. A student would sign up for an account and complete
the pre use questionnaire. The student would then be presented
with the tutorial, which all students were required to do
individually. Then the student would be allowed to select what
questions to work on and whether they wanted to work alone or
with a partner. They would be told how many points they
currently had and when they were done they would complete the
post use questionnaire. If a student worked individually and did
not use any hints they would only need to complete 20 of the 24
questions and this was how most students used the system.
On average, students spent 3.45 minutes to complete the pre-use
questionnaire, 6.23 minutes to complete the tutorial, 7.78 minutes
to complete the post-use questionnaire and 26.34 minutes solving
the exercises in the system. Of the students who completed the
exercise, all but one student completed enough questions to
receive the full 80 marks. The one student who did not receive
the full 80 marks received 66 marks on 17 questions done
individually.

6. RESULTS
After testing the system with students, I are able to see that overall
students’ confidence increased, they found the system enjoyable
and interesting, students’ performance increased and that solving
questions as a pair was more effective than solving them alone. I
will investigate each of these statements more in detail below.

6.1 Student Confidence
As discussed in Section 4.1.5, pre and post use questionnaires
were developed and presented to the students. These
questionnaires were designed to determine if student confidence
about linked list operations improved as a result of using the
system. All values reported from the questionnaires correspond to
Likert Scale average with 1 - Strong Disagree 5 - Strongly Agree.
Overall I see that there is a significant (p < 0.01 using a two-tailed
T test) increase in student confidence in the material after using
the system. This can be seen in Figure 6.

Figure 6: Average confidence scores for pre and post use

questionnaires. Average pre use confidence = 3.30, average
post use confidence = 3.87. Questions asked can be found in

Section 6.1.1.
I also see that there are significant (p < 0.01 using a two-tailed T
test) increases in confidence in both collaborative and individual
students as well in Figures 7 and 8.

Figure 7: Average confidence scores for pre and post use
questionnaires for students who worked collaboratively.

Average pre use confidence = 3.05, average post use
confidence = 3.92.

Figure 8: Average confidence scores for pre and post use

questionnaires for students who worked individually.
Average pre use confidence = 3.05, average post use

confidence = 3.92.
I also see, in Figure 9 that the average confidence increase for
students who worked collaboratively is significantly higher than
those who worked indiviually (p < 0.01 using a two-tailed T test).

Figure 9: Average increase in confidence after using the
system via difference in Likert Scale averages. Average
confidence gain for collaborative student = 0.87, average

confidence gain for individual student = 0.47.

6.1.1 Questions Asked in Confidence Questionnaire
The questions asked to students in both the pre and post use
questionnaires to assess their confidence in the material were as
follows.

1. I am comfortable with using linked lists:

2. I am confident in my ability to write code to make
linked lists:

3. I am confident in my ability to insert into linked lists:
4. I am confident in my ability to find a given node in a

linked list:
5. I am confident in my ability to delete from linked lists:

6. I am confident in my ability to write code to insert into
linked lists:

7. I am confident in my ability to write code to find a
given node in a linked lists:

8. I am confident in my ability to write code to delete from
linked lists:

9. It is easy for me to see the connection between the
diagrams for lists and the code for them.

10. Drawing list operations helps me understand them
better.

6.2 System Usability
In the post use questionnaire students were also asked about the
usability of the system. Overall, students found the system easy
to use and useful. However, students who worked individually
found the system significantly more usable than those who
worked collaboratively (p < 0.01 using a two tailed T test). These
results can be seen in Figure 10.
Overall these results show that more work needs to be put into
making the collaborative mode as user friendly as possible. More
work may be required to continue increasing the response time
and communicating between partners what each other are doing.
This could be done with a shorter refresh time as well as
implemented a feature to highlight a node when a student’s
partner has selected it to cut down on situations where both
students are fighting over where to move a node.

Figure 10: Average usability scores after using the system.

Average score overall = 3.45, average score for collaborative
student who collaborated = 3.07, average score for individual
student = 3.56. Questions asked can be found in Section 6.2.1.

6.2.1 Questions Asked in Usability Questionnaire

1. When I first used the system, it was easy to learn it and
figure out how to use it.

2. I found the system very easy to use.
3. I found the system fun to use.

4. I would use the system to help study for Computer
Science.

5. If the system had exercises for other subjects (e.g.,
Math), I would use it for them too.

6. I would recommend it to my friends to use the system.

6.3 Student Performance
In evaluating the system I looked at performance along 2 separate
metrics. First I looked at the number of attempts a student would
take to answer a question correctly. This is available to us due to
the design of a practice system and not an evaluation system.
This allows the student to try a question as many times as they
need to get a correct answer. The second metric I used was how
long a student would spend to get submit an answer. I then
looked at these metrics with the 2 conditions, collaborative pair
work and individual work.

6.3.1 Student Attempts per Question
I see in Figure 11 the average number of attempts per question for
students working individually. I can see that questions 1-9, the
adding node questions, on average take the least number of
attempts, removing node questions, 10-18, take the second most
and the reordering questions, 19-24, take the most attempts. This
is what I had expected when I designed the system and makes
sense given that this is the order of increasing difficulty. I can see
a similar pattern in Figure 12 for students who worked in pairs but
I have no data for questions 23 and 24 as no students completed
these in pairs. This is due to the fact that more marks were
offered per question when working in pairs and so these questions
were never required.

Figure 11: Average number of attempts per question until a

correct answer is submitted for individual students. Average
for adding nodes questions = 1.35, average for removing nodes

questions = 1.56, average for reordering nodes questions =
1.72

Figure 12: Average number of attempts per question until a

correct answer is submitted for collaborative students.
Average for adding nodes questions = 1.13, average for

removing nodes questions = 1.15, average for reordering
nodes questions = 1.70

The other result that I see when looking at average number of
attempts per question is shown in Figure 13 and Figure 14. I see
that it take significantly fewer attempts to get a question correct
collaboratively than individually (p < 0.05 with a two-tailed T
test).

Figure 13: Average number of attempts per question until a
correct answer is submitted for individual and collaborative

students.

Figure 14: Average number of attempts until a correct answer

is submitted for individual and collaborative students.
Average for individual students = 1.52, average for

collaborative students = 1.24

6.3.2 Time per Question
The final metric that I used to evaluate the system was the amount
of time student spent on questions. I decided to split this into 2
sub categories, the amount of time to submit a correct answer and
the amount of time to submit an incorrect answer. I see if Figure
15 and Figure 16 that the time it takes a student to submit a
correct answer decreases significantly (p < 0.01 using a two-tailed
T test).

Figure 15: Average time per question for individual students.

Average time per incorrect question = 79.38s, average time
per correct question = 35.70s.

Figure 16: Average time per question for collaborative
students. Average time per incorrect question = 83.39s,

average time per correct question = 53.51s.
By looking at the data present in Figure 15 and Figure 16 I also
see that the amount of time it takes to submit a correct answer

when collaborating is significantly longer than the time to submit
a correct answer when working alone (p < 0.01 using a two-tailed
T test). I do not see any significant difference in the time to
submit an incorrect answer however. By using this information as
well as the average number of attempts from Figure 14 I can see
that while it takes longer per attempt when working
collaboratively, because it requires fewer attempts it is actually
more efficient to work with a partner. This data is presented in
Table 1.

Table 1: The average time it takes to complete a question
correctly individually and collaboratively. This was calcuated

by taking the average time per correct attempt (TC) and
adding average number of attempts(A) -1 * average time per

incorrect attempt (TI). TC + (A-1)*TI

 Avg. # of
Attempts

Time per
Correct
Attempt

Time per
Incorrect
Attempt

Time for
Correct
Answer

Collaborative 1.24 53.51s 83.39s 72.92s

Individual 1.52 35.70s 79.38s 76.08s

7. CONCLUSIONS AND FUTURE WORK
Overall, I have shown that the system I created was able to
significantly increase student confidence and performance. I also
have shown that the confidence gained from using the system is
significantly higher when working with a partner. I have also
shown that while it takes significantly longer to complete an
attempt with a partner, the fact that significantly less attempts are
needed means that it is still more efficient to work with a partner
when attempting conceptual linked list questions in the system.
This is in agreement with existing work in the field of
collaborative education and I feel that these results show there is a
need for more systems like this in the field to help with other
conceptual challenging topics in the sciences.

In the future I would like to improve the responsiveness of the
collaboration system and add new ways for collaborators to
communicate more effectively. Some ways that I could do this
would be built in messages when starting to move a node or
complete an action or integrating existing voice or even video chat
software.

Also, although it became beyond the scope of the project I also
think that adding a way to draw the graphical representation of
linked lists back to implemented code would be beneficial as well.
This would allow students to understand the concepts and then
test what they have learned by trying to program them in Java.

8. ACKNOWLEDGEMENTS
I would like to thank Dr. Bowen Hui for her supervision and
guidance throughout the project. I would like to thank Dr.
Abdallah Mohamed for his support and suggestions as I tested the
system with his COSC 121 class. I would also like to thank all
those who helped with UI and pilot testing. Finally I would like
to thank the students of COSC 121 for using the system, providing
feedback, and their patience as some early bugs were ironed out.

9. REFERENCES
[1] Randolph, Justus, et al. "A methodological review of
computer science education research." Journal of Information
Technology Education: Research7.1 (2008): 135-162.
[2] Fossati, Davide, et al. "Supporting computer science
curriculum: Exploring and learning linked lists with

iList." Learning Technologies, IEEE Transactions on2.2 (2009):
107-120.
[3] Dershem, Herbert L., Ryan L. McFall, and Ngozi Uti.
"Animation of Java linked lists." ACM SIGCSE Bulletin. Vol. 34.
No. 1. ACM, 2002.
[4] Panoiu, Manuela, et al. "An interactive learning environment
for analyze linked list data structures." International Journal of
Computers, Communications & Control 1 (2006): 355-359.
[5] Chase, Joe D., and Edward G. Okie. "Combining cooperative
learning and peer instruction in introductory computer
science." ACM SIGCSE Bulletin. Vol. 32. No. 1. ACM, 2000.
[6] Falkner, Katrina, and Edward Palmer. "Developing authentic
problem solving skills in introductory computing classes." ACM
SIGCSE Bulletin. Vol. 41. No. 1. ACM, 2009.
[7] Gonzalez, Graciela. "A systematic approach to active and
cooperative learning in CS1 and its effects on CS2." ACM
SIGCSE Bulletin 38.1 (2006): 133-137.
[8] Joseph, Anthony, and Mabel Payne. Group dynamics and
collaborative group performance. Vol. 35. No. 1. ACM, 2003.
[9] Beck, Leland, and Alexander Chizhik. "Cooperative learning
instructional methods for CS1: Design, implementation, and
evaluation." ACM Transactions on Computing Education
(TOCE) 13.3 (2013): 10.
[10] Johnson, David W., Roger T. Johnson, and Karl A. Smith.
"Active learning: Cooperation in the college classroom." (1991).
[11] Lotfi, Zahra, et al. "Collaborative E-learning tool for
secondary schools." Journal of applied sciences 13 (2013): 22-35.
[12] Leidner, Dorothy E., and Mark Fuller. "Improving student
learning of conceptual information: GSS supported collaborative
learning vs. individual constructive learning." Decision Support
Systems 20.2 (1997): 149-163.

10. APPENDIX - LIST OF EXERCISES
Here are all the exercises presented to students in the system.
Students were allowed to work through the exercises in any order
they choose.

1. In this exercise you need to take the unconnected node
and add it to the list as the first node. Make sure that
when you are done the list has 3 nodes.

2. In this exercise you need to take the unconnected node
and add it to the list as the first node. Make sure that
when you are done the list has 5 nodes.

3. In this exercise you need to take the unconnected node
and add it to the list as the first node. Make sure that
when you are done the list has 3 nodes and that those
nodes are still in increasing numerical order.

4. In this exercise you need to make a new node and add it
to the list so that the nodes are in ascending numerical
order. Make sure that when you are done the list has all
3 nodes.

5. In this exercise you need to take the unconnected node
and add it to the list so that the nodes are in ascending
numerical order. Make sure that when you are done the
list has all 3 nodes.

6. In this exercise you need to take the unconnected node
and add it to the list so that the nodes are in alphabetical

order. Make sure that when you are done the list has all
3 nodes.

7. In this exercise you need to take the unconnected node
and add it to the end of the list. Make sure that when
you are done the list has all 3 nodes.

8. In this exercise you need to add the unconnected node to
the end of the list. Make sure that when you are done
the list has all 5 nodes.

9. In this exercise you need to take the unconnected node
and add it to the list making sure that the list is still in
numerical order. Make sure that when you are done the
list has all 3 nodes.

10. In this exercise you need to remove the front node from
the list.

11. In this exercise you need to remove the node in the list
with the smallest integer as instance data.

12. In this exercise you need to remove the front node from
the list.

13. In this exercise you need to remove all nodes with odd
integers as instance data.

14. In this exercise you need to remove all nodes with even
integers as instance data.

15. In this exercise you need to remove all nodes with no
instance data.

16. In this exercise you need to remove the last node from
the list

17. In this exercise you need to remove the last node from
the list

18. In this exercise you need to remove the last node from
the list

19. In this exercise you need to reverse the order of the
nodes in the list. That is, make the nodes in the list be
sorted by ascending numerical order.

20. In this exercise you need to reverse the order of the
nodes in the list. That is, make the nodes in the list be
sorted by descending numerical order.

21. In this exercise you need to reverse the order of the
nodes in the list. That is, make the nodes in the list be
sorted by alphabetically.

22. In this exercise you need to sort the given nodes in the
list. The list needs to be in alphabetical order.

23. In this exercise you need to reorder the nodes in the list.
The list needs to be in numerically ascending order.

24. In this exercise you need to rearrange the nodes in the
list so that they are in alphabetical order.

