> > # enter data (p. 377) > Group<-gl(2, 12, labels = c("Picture", "Real Spider")) > Anxiety<-c(30, 35, 45, 40, 50, 35, 55, 25, 30, 45, 40, 50, 40, + 35, 50, 55, 65, 55, 50, 35, 30, 50, 60, 39) > spiderLong<-data.frame(Group, Anxiety) > > > > ###################### regular, non Bayesian analyses of the data ###################### > > # Conventional t-test as GLM (Field online script) > > t.test.GLM <- lm(Anxiety ~ Group, data = spiderLong) > summary(t.test.GLM) Call: lm(formula = Anxiety ~ Group, data = spiderLong) Residuals: Min 1Q Median 3Q Max -17.0 -8.5 1.5 8.0 18.0 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 40.000 2.944 13.587 3.53e-12 *** GroupReal Spider 7.000 4.163 1.681 0.107 --- Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1 Residual standard error: 10.2 on 22 degrees of freedom Multiple R-squared: 0.1139, Adjusted R-squared: 0.07359 F-statistic: 2.827 on 1 and 22 DF, p-value: 0.1068 > > > > > ###################### Bayesian t-test using MCMCglmm ###################### > > model1 = MCMCglmm(Anxiety ~ Group, data = spiderLong, verbose = F, + nitt=50000, burnin=3000, thin=10) > > summary(model1) Iterations = 3001:49991 Thinning interval = 10 Sample size = 4700 DIC: 183.4878 R-structure: ~units post.mean l-95% CI u-95% CI eff.samp units 114.7 54.55 189.7 4700 Location effects: Anxiety ~ Group post.mean l-95% CI u-95% CI eff.samp pMCMC (Intercept) 40.001 34.217 46.303 4700 <2e-04 *** GroupReal Spider 6.910 -1.508 15.434 4233 0.097 . --- Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1 > autocorr(model1$VCV) , , units units Lag 0 1.000000000 Lag 10 -0.009766803 Lag 50 0.011863046 Lag 100 -0.012402356 Lag 500 -0.005309054 > plot(model1) Hit to see next plot: > > # running the same analyses using different priors, & then plotting the various posteriors for "Group" > > > estimateNum = 2 # the number of regression estimate to be used for the analyses e.g., the 1st (intercept), or 2nd, etc > > Ndatasets = 5 # the number of additional analyses using different priors > > # plot data for the first Bayes model > densdat <- density(model1$Sol[,estimateNum]) > plotdatx <- densdat$x > plotdaty <- densdat$y > > # for MCMCglmm priors, B is for fixed effects. B is a list containing the expected value (mu) > # and a (co)varcv bgiance matrix (V) representing the strength of belief: the defaults are B$mu=0 > # and B$V=I*1e+10, where where I is an identity matrix of appropriate dimension > > # the different priors will be derived from the lm, non-Bayesian regression coefficients > # the mu values will be random values from a 4 SE range around the lm estimates > # the V values will be set at (4 * the SEs)**2 > > fit.list <- summary.lm(t.test.GLM) > coeffs <- fit.list$coefficients > coefnames <- rownames(coeffs) > > # ranges around the lm estimates > MUranges <- cbind( (coeffs[,1] - (4 * coeffs[,2])), (coeffs[,1] + (4 * coeffs[,2])) ) > > # random values from the MUranges for each coefficient > MUs <- matrix(-9999,nrow(coeffs),Ndatasets) > for (lupe in 1:nrow(coeffs)) { MUs[lupe,] <- runif(Ndatasets, min=MUranges[lupe,1], max=MUranges[lupe,2]) } > dimnames(MUs) <-list(rep("", dim(MUs)[1])) > colnames(MUs) <- seq(1:Ndatasets) > cat('\n\nPrior regression coefficient estimates for each additional analysis:') Prior regression coefficient estimates for each additional analysis: > print(round(MUs,2)) 1 2 3 4 5 42.63 40.35 34.86 43.46 34.46 -4.47 -0.50 21.79 2.04 16.95 > > # (co)variance matrix (V) representing the strength of belief - which will be (2 * the lm SEs)**2 > Vlmx2 <- diag((4 * coeffs[,2])**2) > colnames(Vlmx2) <- seq(1:nrow(MUs)) > cat('\n\nPrior variance (strength of belief) value used for each regression estimate in the additional analyses:\n', + round(diag(Vlmx2),5), sep="\n") Prior variance (strength of belief) value used for each regression estimate in the additional analyses: 138.6667 277.3333 > > > for (lupeSets in 1:Ndatasets) { + prior.list <- list(B = list(mu = MUs[,lupeSets], V = Vlmx2)) + model2 = MCMCglmm(Anxiety ~ Group, data = spiderLong, prior = prior.list, + nitt=50000, burnin=3000, thin=10, verbose=F) + + densdat <- density(model2$Sol[,estimateNum]) + plotdatx <- cbind( plotdatx, densdat$x) + plotdaty <- cbind( plotdaty, densdat$y) + } > > matplot( plotdatx, plotdaty, main="", xlab=paste('Estimate for', coefnames[estimateNum]), ylab='Density', + font.lab=1.8, type='l', cex.lab=1.2, col=c(2,rep(1,ncol(plotdatx))), lty=1, lwd=1 ) > title(main=paste('Density Plots of the Posteriors for', coefnames[estimateNum], '\nProduced Using Differing Priors')) > legend("topright", c("broad priors","random priors"), bty="n", lty=c(1,1), + lwd=2, cex=1.2, text.col=c(2,1), col=c(2,1) ) > > > > ################ posterior predictive checks using the bayesplot package ###################### > > # from the bayesplot package documentation: > # The bayesplot package provides various plotting functions for graphical posterior predictive checking, > # that is, creating graphical displays comparing observed data to simulated data from the posterior > # predictive distribution. The idea behind posterior predictive checking is simple: if a model is a > # good fit then we should be able to use it to generate data that looks a lot like the data we observed. > > y <- spiderLong$Anxiety # the DV that was used for the MCMCglmm model > > # generating the simulated data using the simulate.MCMCglmm function from the MCMCglmm package > yrep <- simulate.MCMCglmm(model1, 25) > > yrep <- t( yrep ) # transposing yrep for the bayesplot functions > > > # ppc_stat: A histogram of the distribution of a test statistic computed by applying stat to each > # dataset (row) in yrep. The value of the statistic in the observed data, stat(y), is > # overlaid as a vertical line. > ppc_stat(y, yrep, binwidth = 1) > > > # ppc_dens_overlay: Kernel density or empirical CDF estimates of each dataset (row) in yrep are > # overlaid, with the distribution of y itself on top (and in a darker shade). > ppc_dens_overlay(y, yrep[1:25, ]) > > > # ppc_scatter_avg: A scatterplot of y against the average values of yrep, i.e., the > # points (mean(yrep[, n]), y[n]), where each yrep[, n] is a vector of length equal > # to the number of posterior draws. > ppc_scatter_avg(y, yrep) > > > # ppc_hist: A separate histogram, shaded frequency polygon, smoothed kernel density estimate, > # or box and whiskers plot is displayed for y and each dataset (row) in yrep. > # For these plots yrep should therefore contain only a small number of rows. > ppc_hist(y, yrep[1:8, ], binwidth = .3) > > > > ###################### now conduct the Bayesian analyses using the rstanarm package ###################### > > > model10 <- stan_glm(Anxiety ~ Group, data = spiderLong, + warmup = 3000, iter = 50000, sparse = FALSE, seed = 123) SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1). Gradient evaluation took 3.9e-05 seconds 1000 transitions using 10 leapfrog steps per transition would take 0.39 seconds. Adjust your expectations accordingly! Iteration: 1 / 50000 [ 0%] (Warmup) Iteration: 3001 / 50000 [ 6%] (Sampling) Iteration: 8000 / 50000 [ 16%] (Sampling) Iteration: 13000 / 50000 [ 26%] (Sampling) Iteration: 18000 / 50000 [ 36%] (Sampling) Iteration: 23000 / 50000 [ 46%] (Sampling) Iteration: 28000 / 50000 [ 56%] (Sampling) Iteration: 33000 / 50000 [ 66%] (Sampling) Iteration: 38000 / 50000 [ 76%] (Sampling) Iteration: 43000 / 50000 [ 86%] (Sampling) Iteration: 48000 / 50000 [ 96%] (Sampling) Iteration: 50000 / 50000 [100%] (Sampling) Elapsed Time: 0.083947 seconds (Warm-up) 1.65063 seconds (Sampling) 1.73458 seconds (Total) SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2). Gradient evaluation took 1.4e-05 seconds 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds. Adjust your expectations accordingly! Iteration: 1 / 50000 [ 0%] (Warmup) Iteration: 3001 / 50000 [ 6%] (Sampling) Iteration: 8000 / 50000 [ 16%] (Sampling) Iteration: 13000 / 50000 [ 26%] (Sampling) Iteration: 18000 / 50000 [ 36%] (Sampling) Iteration: 23000 / 50000 [ 46%] (Sampling) Iteration: 28000 / 50000 [ 56%] (Sampling) Iteration: 33000 / 50000 [ 66%] (Sampling) Iteration: 38000 / 50000 [ 76%] (Sampling) Iteration: 43000 / 50000 [ 86%] (Sampling) Iteration: 48000 / 50000 [ 96%] (Sampling) Iteration: 50000 / 50000 [100%] (Sampling) Elapsed Time: 0.081407 seconds (Warm-up) 1.54933 seconds (Sampling) 1.63074 seconds (Total) SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3). Gradient evaluation took 1.4e-05 seconds 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds. Adjust your expectations accordingly! Iteration: 1 / 50000 [ 0%] (Warmup) Iteration: 3001 / 50000 [ 6%] (Sampling) Iteration: 8000 / 50000 [ 16%] (Sampling) Iteration: 13000 / 50000 [ 26%] (Sampling) Iteration: 18000 / 50000 [ 36%] (Sampling) Iteration: 23000 / 50000 [ 46%] (Sampling) Iteration: 28000 / 50000 [ 56%] (Sampling) Iteration: 33000 / 50000 [ 66%] (Sampling) Iteration: 38000 / 50000 [ 76%] (Sampling) Iteration: 43000 / 50000 [ 86%] (Sampling) Iteration: 48000 / 50000 [ 96%] (Sampling) Iteration: 50000 / 50000 [100%] (Sampling) Elapsed Time: 0.084535 seconds (Warm-up) 1.66287 seconds (Sampling) 1.7474 seconds (Total) SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4). Gradient evaluation took 1.6e-05 seconds 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds. Adjust your expectations accordingly! Iteration: 1 / 50000 [ 0%] (Warmup) Iteration: 3001 / 50000 [ 6%] (Sampling) Iteration: 8000 / 50000 [ 16%] (Sampling) Iteration: 13000 / 50000 [ 26%] (Sampling) Iteration: 18000 / 50000 [ 36%] (Sampling) Iteration: 23000 / 50000 [ 46%] (Sampling) Iteration: 28000 / 50000 [ 56%] (Sampling) Iteration: 33000 / 50000 [ 66%] (Sampling) Iteration: 38000 / 50000 [ 76%] (Sampling) Iteration: 43000 / 50000 [ 86%] (Sampling) Iteration: 48000 / 50000 [ 96%] (Sampling) Iteration: 50000 / 50000 [100%] (Sampling) Elapsed Time: 0.096829 seconds (Warm-up) 1.53848 seconds (Sampling) 1.63531 seconds (Total) > > summary(model10, digits = 3) Model Info: function: stan_glm family: gaussian [identity] formula: Anxiety ~ Group algorithm: sampling priors: see help('prior_summary') sample: 188000 (posterior sample size) observations: 24 predictors: 2 Estimates: mean sd 2.5% 25% 50% 75% 97.5% (Intercept) 40.067 3.053 34.012 38.068 40.067 42.073 46.079 GroupReal Spider 6.814 4.263 -1.615 4.018 6.808 9.610 15.219 sigma 10.547 1.655 7.901 9.373 10.346 11.499 14.357 mean_PPD 43.470 3.075 37.401 41.464 43.465 45.481 49.540 log-posterior -97.952 1.294 -101.314 -98.538 -97.617 -97.008 -96.481 Diagnostics: mcse Rhat n_eff (Intercept) 0.007 1.000 167803 GroupReal Spider 0.011 1.000 164773 sigma 0.004 1.000 145428 mean_PPD 0.007 1.000 175162 log-posterior 0.005 1.000 73524 For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1). > plot(model10) > >