Nonlinear Fits:

1. Find the best-fit parameters
 - Set up a grid of parameters
 - Evaluate χ^2 at each grid point
 - The point that results in minimum χ^2 values gives an estimate of best-fit parameters.
(2) Pick one of the parameters χ^2 at 3 values of a_i that bracket the minimum in χ^2. Expect χ^2 to vary quadratically near the minimum.

\[
\chi^2 \approx a_j^2
\]

\[
\begin{array}{c}
\chi^2 \\
\chi_1^2 \\
\chi_2^2 \\
\chi_3^2
\end{array}
\begin{array}{c}
a_j \\
a_j + \Delta a \\
a_j + 2\Delta a
\end{array}
\]

Estimate $\sigma_j = \sqrt{\chi^2 \Delta a / \sqrt{\chi_1^2 - 2\chi_2^2 + \chi_3^2}}$

Intuitive understanding of meaning of χ^2

... qualitative discussion

Definition: $\chi^2 = \sum_{i=1}^{N} \left(\frac{y_i - y_c(x_i)}{\sigma_i} \right)^2$
where \((x_i, y_i \pm \sigma_i)\) \(i = 1..N\).

\(y(x_i)\) is expected value of \(y\) calculated from theoretical model.

On average, expect that data should deviate from model prediction by \(\approx \sigma_i\)

→ assuming that

1. reasonable estimates of \(\sigma_i\) values.
2. Theoretical model used is valid.
Then should expect that

\[
\left(\frac{y_i - y(x_i)}{\sigma_i} \right)^2 \sim \left(\frac{\sigma_i}{\sigma_i} \right)^2 = 1
\]

on average.

\[
\therefore \chi^2 = \sum_{i=1}^{n} \left(\frac{y_i - y(x_i)}{\sigma_i} \right)^2 = N \text{ no. of meas.}
\]

So assuming \(\sigma_i \) reasonable, if \(\chi^2 \approx N \) then model captures features of data

\(\Rightarrow \chi^2 \) is "goodness of fit" parameter.
In this scenario, pts within red box result in
\[\left(\frac{y_i - y(x_i)}{\sigma_i} \right)^2 > 1 \]

\(\chi^2 \) will be greater than \(N \).

A \(\chi^2 \) value significantly greater than \(N \) indicates a poor fit to the data.

A \(\chi^2 \) value significantly less than \(N \)
\[\chi^2 = \sum_i \left(\frac{y_i - y(x_i)}{\sigma_i} \right)^2 \]
usually indicates that the \(\sigma_i \) has overestimated the values of \(\sigma_i \).
Expecting $\chi^2 = N$ is correct when have N large. However, consider the following extreme cases.

1 parameter fit with $N=1$ (single meas.)

$(x_1, y_1 \pm \sigma_1)$

Model $y = a$

Best-fit value of a based on the data is $a = \bar{y}_1 \leftarrow$ unknown parameter estimated from our single measurement.
Calc. \[\chi^2 = \frac{y_i - y(x_i)}{\sigma_i} = \frac{y_i - y_1}{\sigma_1} = 0 \]

If, on the other hand, we used the true value \(a^* \) to calc. \(\chi^2 = \chi_a^2 \) we would find

\[\chi_a^2 = \left(\frac{y_i - a^*}{\sigma_i} \right)^2 \approx 1 \]

Find that \(\chi^2 \) is artificially low.

Issue is that the meas. data is artificially set to be close to the parameter value since the parameter was estimated using the experimental data.

2 parameter fit (straight line) w/ \(N=2 \).

\[(x_1, y_i \pm \sigma_i) \] model is \(y = a + b \times \)

\[(x_2, y_2 \pm \sigma_2) \]
would calculate \[\chi^2 = \sum_{i=1}^{n} \left(\frac{y_i - y(x_i)}{\sigma_i} \right)^2 = 0 \]

We would then calculate \[\chi^2_{\text{true}} = \sum_{i=1}^{n} \left(\frac{y_i - (a^* + b^* x_i)}{\sigma_i} \right)^2 \approx 2 \]

Recall standard dev. \[s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2 \]

\[\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \]
If fit N data pts to a model w/ m parameters, then only $N-m$ of the pts are independent.

$\nu = N-m$ is called the number of degrees of freedom.

Expected value of χ^2 is

$$\chi^2 \sim \nu = N-m$$

or $\chi^2 = \frac{\chi^2}{\nu} = 1$ if have reasonable est. of $\bar{\sigma}_i$' and theoretical model properly describes data, expect $\chi^2 = 1$.

"reduced χ^2"

If $\chi^2 > 1$... model does not properly capture all features of data

$\chi^2 < 1$... probably overest. the $\bar{\sigma}_i$ values.

$\Rightarrow \chi^2$ is goodness of fit parameter.