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We begin this chapter with the bold claim that it provides a neuroscientific explanation of the 
magic of creativity. Creativity presents a formidable challenge for neuroscience. Neuroscience 
generally involves studying what happens in the brain when someone engages in a task that 
involves responding to a stimulus, or retrieving information from memory and using it the right 
way, or at the right time. If the relevant information is not already encoded in memory, the task 
generally requires that the individual make systematic use of information that is encoded in 
memory. But creativity is different. It paradoxically involves studying how someone pulls out of 
their brain something that was never put into it! Moreover, it must be something both new and 
useful, or appropriate to the task at hand. The ability to pull out of memory something new and 
appropriate that was never stored there in the first place is what we refer to as the magic of 
creativity. We will see that (like all magic acts) it isn’t really magic after all; there is a clever 
trick behind it.  
 The difficulty of achieving a neuroscientific account of creativity goes far beyond the 
problem of getting people to be creative on demand. Even if we are so fortunate as to determine 
which areas of the brain are active and how these areas interact during creative thought, we will 
not have an answer to the question of how the brain comes up with solutions and artworks that 
are new and appropriate. Although standard technologies for investigating brain activity such as 
fMRI, EEG, and PET may have much to tell us about creativity, in their current state of 
development they focus at too high a level to explain the magic of creativity.  

On the other hand, since the representational capacity of neurons emerges at a level that is 
higher than that of the individual neurons themselves, i.e. there is no ‘grandmother neuron’ that 
always responds to your grandmother, or to Halle Berry, and nothing else, the inner workings of 
neurons is too low a level to explain the magic of creativity. Although it is a little unsatisfying, 
even if we do not yet know everything there is to know about the conditions under which 
individual neurons form new dendrites, or what temporary or permanent intracellular changes 
take place in response to novel stimuli, in order to ‘go for the gold’, we assume these things 
happen somehow, and move up a level.  

Thus we look to a level that is midway between gross brain regions and neurons. Since 
creativity generally involves combining concepts from different domains, or seeing old ideas 
from new perspectives, we focus our efforts on the neural mechanisms underlying the 
representation of concepts and ideas. Thus we ask questions about the brain at the level that 
accounts for its representational capacity, i.e. at the level of distributed aggregates of neurons 
(Blasdel & Salama, 1986; Chandrashekharan, 2009; Churchland & Sejnowski, 1992; Dayan & 
Abbott, 2001; Eliasmith & Anderson, 2003; Hebb, 1949, 1980; Lin et al., 2005; Lin, Osan, & 
Tsien, 2006; Smith & Kosslyn, 2007).  

We lack methods that permit the necessary spatial resolution to zero in on distributed 
aggregates of neurons as someone creates, and the necessary temporal resolution to see what 
these neurons are doing, so in choosing to focus at this level we are in a sense we are groping in 
the dark. We focus at this level not because the proper tools already exist—i.e., not because 
that’s where the light is—but because that’s where we need to look—i.e., that’s where we think 
the quarter is. In the absence of the ability to directly manipulate and experiment with events at 
the level midway between gross brain regions and neurons during real in vivo bouts of creative 
thinking, computational models, and a little detective work, play roles in our account of the 
mechanisms underlying creative insight. We believe that we have located something that has the 
size, shape, and feel of the real quarter. It explains what is commonly referred to as ‘jumping out 
of the box’, or what Boden (1990) refers to as transformational creativity: creativity that 



How Insight Emerges in a Distributed, Content-addressable Memory 

 3 

involves not just exploring but changing the space of possibilities. The bulk of this account was 
put forward over a decade ago (Gabora, 2001) and refined since (Gabora, 2002, 2010, under 
revision); here we summarize the key elements, and frame them in terms of more recent 
neuroscientific findings.  

 
The Ingenious Way that Representations are Encoded in Memory 

We said that creativity involves pulling something out of your brain that was never put into it. 
Nevertheless it is generally assumed that what gets pulled out bears some relationship to 
knowledge and experiences encoded in memory before the creative act took place. But although 
we spend 15 to 50% of our time engaged in mindwandering, recalling and playing with existing 
knowledge and ideas in an undirected manner (Smallwood & Schooler, 2006), little of this is 
what we would call creative; only rarely would one of the thoughts one has during a bout of 
mindwandering qualify as an insight (Andrews-Hanna, Reilder, Huang, & Buckner, 2010; Signer 
& Antrobus, 1963). So one question is: what is going on above and beyond the usual tinkering 
and rearranging that occurs in everyday mindwandering when a genuinely creative idea 
emerges? A second question is the following. There are a potentially infinite number of different 
ways of tweaking what we know to come up with something new. How is it that people so often 
manage to hit on ideas that are just right? We believe that the answer to these questions can be 
obtained by looking at the ingenious way that one’s history of experiences is encoded in 
memory. A brain contains information that was never explicitly stored there but that is implicitly 
present nonetheless. We propose that this implicitly present information enables one to go 
beyond what one knows without resorting to trial and error.  

We take as a starting point some fairly well established characteristics of memory. Human 
memories are encoded in neurons that are sensitive to ranges (or values) of microfeatures 
(Churchland & Sejnowski, 1992; Churchland, Sejnowski, & Arbib, 1992; Smolensky, 1988). For 
example, one might respond to lines of a particular orientation, or the quality of honesty, or quite 
possibly something that does not exactly match an established term (Miikkulainen, 1997). 
Although each neuron responds maximally to a particular microfeature, it responds to a lesser 
extent to related microfeatures, an organization referred to as coarse coding (Hubel & Wiesel, 
1965). Not only does a given neuron participate in the encoding of many memories, but each 
memory is encoded in many neurons. For example, neuron A may respond preferentially to 
sounds of a certain frequency, while its neighbor B responds preferentially to sounds of a slightly 
different frequency, and so forth. However, although A responds maximally to sounds of one 
frequency, it responds to a lesser degree to sounds of a similar frequency. The upshot is that an 
item in memory is distributed across a cell assembly that contains many neurons, and likewise, 
each neuron participates in the storage of many items (Hebb, 1949; Hinton, McClelland, & 
Rumelhart, 1986). A given experience activates not just one neuron, nor every neuron to an equal 
degree, but activation is spread across members of an assembly. The same neurons get used and 
re-used in different capacities, a phenomenon referred to as neural re-entrance (Edelman, 1987).  

The final key attribute of memory is the following. Memory is said to be content 
addressable, meaning that there is a systematic relationship between the content of a 
representation and the neurons where it gets encoded. This emerges naturally as a consequence 
of the fact that representations activate neurons that are tuned to respond to particular features, so 
representations that get encoded in overlapping regions of memory share features. As a result, 
they can thereafter be evoked by stimuli that are similar or ‘resonant’ in some (perhaps context-
specific) way (Hebb, 1949; Marr, 1969).  
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This kind of distributed, content-addressable memory architecture is schematically 
illustrated in Figure 1. Each circle represents a microfeature that is maximally responded to by a 
particular neuron. Circles that are close together respond to microfeatures that are similar or 
related. The large, diffuse region of whiteness indicates the region of memory activated by the 
current thought or experience. Note that even if a brain does not possess a neuron that is 
maximally tuned to a particular microfeature, the brain is still able to encode stimuli in which 
that microfeature predominate, because representations are distributed across many neurons.  

 
[INSERT FIGURE 1 ABOUT HERE] 

 
The distributed, content-addressable architecture of memory is critically important for 

creativity. If it were not distributed, there would be no overlap between items that share 
microfeatures, and thus no means of forging associations between them. If it were not content-
addressable, associations would not be meaningful. The upshot of all this is that representations 
that share features are encoded in overlapping distributions of neurons, and therefore activation 
can spread from one to another. Thus representations are encoded in memory a way that takes 
into account how they are related, even if this relationship has never been consciously noticed. 
This is not earth shattering; indeed it seems fairly obvious with respect to the hierarchical 
structure of knowledge. We may never have explicitly learned that a white goat is a mammal, but 
we know it is one nonetheless. It is in this sense that we claimed earlier that people implicitly 
know more than they have ever explicitly learnt. As we will see, this architecture has 
implications that extend far beyond issues related to the hierarchical structure of knowledge.  

It should be pointed out how different this is from a typical computer memory. In a 
computer memory, each possible input is stored in a unique address. Retrieval is thus a matter of 
looking at the address in the address register and fetching the item at the specified location. Since 
there is no overlap of representations, there is no means of creatively forging new associations 
based on newly perceived similarities. The exceptions are computer architectures that are 
designed to mimic, or are inspired by, the distributed, content-addressable nature of human 
memory.  

 
Forging Unusual Associations through Reconstructive Interference of Memories 

A fascinating finding to come out of the early connectionist literature is that in a distributed, 
content addressable memory, not only do representations that share features activate each other, 
they sometimes interact in a way that is creative. Even a simple neural network is able to abstract 
a prototype, fill in missing features of a noisy or incomplete pattern, or create a new pattern on 
the fly that is more appropriate to the situation than anything it has ever been fed as input 
(McClelland & Rumelhart, 1986). In fact, similar representations can interfere with one another 
(Feldman & Ballard, 1982; Hopfield, 1982; Hopfield, Feinstein, & Palmer, 1983). Interestingly, 
the numerous names for this phenomenon—‘crosstalk’, ‘false memories’, ‘spurious memories’, 
‘ghosts’, and ‘superposition catastrophe’—are suggestive of a form of thought that, if not 
outright creative, involves a departure from known reality. Findings from neuroscience are also 
highly consistent with this phenomenon; indeed as Edelman (2000) puts it, one does not retrieve 
a stored item from memory so much as reconstruct it. That is, an item in memory is never re-
experienced in exactly the form it was first experienced, but colored, however subtly, by what 
has been experienced in the meantime, re-assembled spontaneously in a way that relates to the 
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task at hand (one reason eye-witness accounts cannot always be trusted) (Paterson, Kemp, & 
Forgas, 2009; Loftus, 1980; Schacter, 2001). 

The reconstructive nature of memory, while detrimental in some contexts, is beneficial in 
others; indeed we claim it underlies what was referred to earlier as the magic of creativity. 
Cognitive psychologists have long struggled with the question of how minds generate ideas that 
are both new and useful. Almost universally they have concluded that creativity must be a 
process of search not so different from what happens in a typical computer; it must involve 
sifting through possibilities, perhaps tweaking or exploring them, until an acceptable one is 
selected (e.g. Newell, Shaw & Simon 1957; Newell & Simon 1972; Finke, Ward, & Smith, 
1992; Simonton, 1999). But by approaching creativity from a neuroscientific perspective, and 
specifically focusing on our chosen level midway between brains and neurons, we see that the 
content-addressable, reconstructive nature of memory enables the brain to accomplish creative 
acts without recourse to a ‘search and selection’ type explanation.  

Because information is encoded in a distributed manner across ensembles of neurons 
interacting by way of synapses, the meaning of a representation is in part derived from the 
meanings of other representations that excite similar constellations of neurons; that is why it is 
sometimes referred to as an associative memory. Content addressability ensures that the brain 
naturally brings to mind items that are similar in some perhaps unexpected or indefinable but 
useful or appealing way to what is being experienced. Recall that if the regions in memory where 
two distributed representations are encoded overlap then they share one or more microfeatures. 
They may have been encoded at different times, under different circumstances, and the 
correlation between them never explicitly noticed. But the fact that their distributions overlap 
means that some context could come along for which this overlap would be relevant, causing one 
to evoke the other. There are as many routes by which an association between two 
representations can be forged as there are microfeatures by which they overlap; i.e., there is room 
for typical as well as atypical connections. Therefore what gets evoked in a given situation is 
relevant, and that happens for free—no search is necessary at all—because memory is content-
addressable! The ‘like attracts like’ principle is deeply embedded in our neural architecture.  

Moreover, because memory is distributed and subject to crosstalk, if a situation does come 
along that is relevant to multiple representations, they merge together, a phenomenon that has 
been termed reconstructive interference (Gabora & Saab, 2011). The multiple items may be so 
similar to each other that you never detect that the recollection is actually a blend of many items. 
In this case the distributions of neurons they activate overlaps substantially. Or they may differ in 
mundane ways, as in everyday mindwandering. Alternatively, they may be superficially different 
but related in a way you never noticed before. In this case the distributions of neurons they 
activate overlaps only with respect to only a few features that in the present context happen to be 
relevant or important. Alternatively, the present experience may infuse recall of a previous 
experience that is relevant or important with respect to only a few key features. For example, the 
person who invented waterskiing may have been sitting on a beach thinking about snow skiing. 
The SKIING representation merged with the WATER representation and the idea of 
WATERSKIING was born. Of course the invention of waterskiing could have happened 
differently. The person could have been thinking about Jesus walking on water and seen a boat 
go by slowly with a fish being pulled in on a fishing line. In this case waterskiing was born 
through the merging of the WALK ON WATER representation with the PULLED BY BOAT 
representation to give MOVE ACROSS WATER PULLED BY BOAT. Note that 
WATERSKIING (or MOVE ACROSS WATER PULLED BY BOAT) was not waiting in a 
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dormant, predefined state to be selected, nor was it tweaked or mutated in a trial and error 
manner. Reconstructive interference of implicitly present information enables one to ‘go beyond 
what one explicitly knows’ to solve a problem or express oneself creatively. The greater the 
extent to which the contributing representations differ, the more likely it is to result in 
transformative creativity as opposed to mere exploratory creativity.  

 
Resolving Unusual Associations: States of Potentiality and their Actualization 

We saw that reconstructive inteference allows us to generate novelty without having to try 
out lots of possibilities. However, it has a disadvantage. When representations come together for 
the first time, it is not always clear how they go together; indeed the new idea may barely make 
sense, as is epitomized by the phrase ‘half-baked idea’. For example, having the idea of 
waterskiing is a far cry from knowing concretely how one would really ski on water. In the beach 
scenario, the inventor must figure out that the waterskiier is pulled by a boat, and does not need 
poles. In the Jesus scenario, the inventor must figure out that the waterskiier wears skiis. In either 
case, the insight initially exists in a state of potentiality; it is not yet clear how it could actualize. 
So the effortful aspect of creativity involves not generating, testing, and selecting, but actualizing 
potential (Gabora, 2005), either by thinking the idea through, or trying it out.  

At the moment of insight different possible realizations of the idea have not yet been 
conceived of. However, they are implicitly present in memory in the sense that each possible 
realization of the idea activates a different but overlapping constellation of neurons that respond 
to different sets of microfeatures. For example, one potential realization is that the poles are 
flattened like paddles. Another potential realization, the most effective one it turns out, involves 
pulling the skiier from a boat. 

 
How Distributed Should a Memory be for Creative Insight to Take Place? 

How much overlap of microfeatures must there be to result in creative insight? At one 
extreme it could be not distributed at all, like a typical computer memory. If your mind stored 
each item in just one location as a computer does, then in order for one experience to remind you 
of a previous experience, it would have to be identical to that previous experience. And since the 
space of possible experiences is so vast that no two ever are exactly identical, this kind of 
organization would be fairly useless. But at the other extreme, if your memory were fully 
distributed, with each item is stored in every location, the crosstalk would be catastrophe; 
everything would pretty much remind you of everything. 

The problem of crosstalk is solved by constraining the distribution region. One way to do 
this in neural networks is to use a radial basis function, or RBF (Hancock, Smith, & Phillips, 
1991; Holden & Niranjan, 1997; Lu, Sundararajan, & Saratchandran, 1997; Willshaw & Dayan, 
1990). Each input activates a hypersphere (sphere with more than three dimensions) of locations, 
such that activation is maximal at the center k of the RBF and tapers off in all directions 
according to a (usually) Gaussian distribution of width σ. The result is that one part of the 
network can be modified without affecting the capacity of other parts to store other patterns. A 
spiky activation function means that σ is small. Therefore only those locations closest to k get 
activated, but they are activated a lot. A flat activation function means that σ is large. Therefore 
locations relatively far from k still get activated, but no location gets very activated.  

In the brain it is the principle of course coding that ensures that distributions are constrained. 
Because neurons respond most reliably to one particular feature and less reliably to similar 
features, the region of activation falls midway between two extremes—not distributed at all (a 
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one-to one correspondence between each input and each neuron) and fully distributed (each input 
activates every neuron). It is because not one neuron, nor every neuron, but a subset of neurons is 
activated, that one can generate a stream of coherent yet potentially creative thought (Gabora, 
2001). The more detail with which items have been encoded in memory, the greater their 
potential overlap with other items, and the more routes by which one can make sense of the 
present in terms of the past or engage in creative thinking. 

 
Insight, Contextual Focus, and Neurds 

With flat activation, items are evoked in detail, or multiple items are evoked at once, items 
with overlapping distributions of microfeatures. Thus flat activation is conducive to forging 
remote associations amongst items not usually thought to be related, or detecting relationships of 
correlation. Indeed flat activation would be expected to result in the flat associative hierarchies 
characteristic of highly creative people (Mednick, 1962). With spiky activation, items are evoked 
in a compressed form, and few are evoked at once. Thus it is conducive to mental operations on 
those items, or deducing relationships of causation. Indeed spiky activation would be expected to 
result in the spiky associative hierarchies characteristic of uncreative people Mednick (1962). 

One would imagine that there would be situations where spiky activation would be useful—
as when one needs to stay focused, and access remote associations would be distracting, and 
other situations where flat activation would be useful—as when conventional problem solving 
methods are not working.  

It has long been thought that there are two modes of thought, sometimes referred to as 
associative and analytic (Freud, 1949; Guilford, 1950; James, 1890) and that we shift between 
along a continuum between these two extremes depending on the situation we are in (Gabora, 
2002; Gabora, 2003). The capacity to shift between the two modes of thought is sometimes 
referred to as contextual focus, because a change from one mode to the other is brought about by 
the context, through the focusing or defocusing of attention. This is related to dual process 
theory, the idea that cognition employs both implicit and explicit ways of learning and 
processing information (Chaiken & Trope, 1999; Evans & Frankish, 2009), since analytic 
thought is believed to involve processing of explicit information whereas associative thought is 
believed to involve processing of implicit information. Thus contextual focus entails not just the 
capacity for both associative and analytic thought, but the capacity to adjust the mode of thought 
to match the demands of the situation. It seems reasonable that we engage in contextual focus 
using a mechanism akin to varying the size of the RBF: spontaneously tuning the spikiness of the 
activation function in response to the situation.  

What neural mechanisms might underlie the capacity to shift between associative and 
analytic modes of thought? It has been shown that the cell assembly involved in the encoding of 
a particular experience is made up of multiple groups of collectively co-spiking neurons referred 
to as neural cliques (Lin et al., 2005; Lin, Osan, & Tsien, 2006). Techniques that enable their 
patterns of activation to be mathematically described, directly visualized, and dynamically 
deciphered, reveal that some cliques respond to situation-specific elements of an experience 
(e.g., where it took place), while others respond to characteristics of varying degrees of 
generality or abstractness. These range from the type of experience (e.g., being dropped) to 
characteristics common to many types of experience (e.g., anything dangerous). This has been 
depicted as a pyramid in which cliques that respond to the most context-specific elements are at 
the top, and those that respond to the most general elements are at the bottom (Lin et al., 2005).  
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We can now make a reasonable hypothesis for what is happening at the level of neural 
cliques during creative thought. Each successive thought activates recruitment of more or fewer 
neural cliques, depending on the nature of the problem, and how far along one is in solving it. 
Two well-established phenomena help ensure that a particular thought doesn’t recursively 
reactivate itself. First, if the same neurons are stimulated repeatedly they become refractory. For 
the duration of this refractory period they cannot fire, or their response is greatly attenuated. 
Second, they ‘team play’; a response is produced by a cooperative group of neurons such that 
when one is refractory another is active. Since the situation-general neurons and the situation-
specific neurons are not responding to the same aspects of the situation, they are not entering and 
leaving their refractory periods in synchrony, making it unlikely that one will think the same, 
identical thought over and over again (although over a longer time frame one may repeatedly 
cycle back to it). 

Returning to Figure 1 we can get a schematic picture of how memory is activated by a 
particular thought. Recall that the degree to which any given region of memory is activated by 
the current thought or experience is indicated by the degree of whiteness. The white area thus 
represents the active cell assembly composed of one or more neural cliques, indicated by dashed 
gray circles. The further a neuron is from the center of the white region, the less activation it not 
only receives from the current instant of experience but in turn contributes to the next instant, 
and the more likely its contribution is cancelled out by that of other simultaneously active 
locations. Using neural network terminology, we say the broader the region affected, the flatter 
the activation function, and the narrower the affected region, the spikier the activation function. 
Figure 1 portrays the state of someone sitting on a beach thinking about snow skiing in an 
analytic state of mind. The white region is narrow because it is activated in an analytic mode of 
thought. It includes only neurons that respond to typical features of skiing such as the flatness of 
the skis and pointiness of the poles. 

In a state of defocused attention more aspects of a situation get processed; the set of 
activated microfeatures is larger, and thus the set of potential associations one could make is 
larger. Figure 2 shows the state of mind of someone sitting at the beach thinking about snow 
skiing, but here the activation function is flat. Recruitment of neural cliques that respond to 
abstract elements of the current thought (e.g. slide across smooth surface) causes the individual 
to extend the idea of sliding across a surface to the present context of being at the beach. There is 
reconstructive interference of the skiing concept with this current experience, in which features 
of skiing (e.g. flatness of skis) are merged with features of water (e.g. that it is liquid not solid). 
Features of water seem irrelevant to skiing, but they are relevant to inventing a means to ski in 
the summer.  

 
[INSERT FIGURE 2 ABOUT HERE] 

 
The neural cliques that do not fall within the activated region in Figure 2 but do fall within 

the activated region in Figure 3 are cliques that would not be included in a cell assembly if one 
were in an everyday relatively convergent mode of thought, but would be included if one were in 
an associative mode of thought. We can refer to them as neurds. Neurds respond to 
microfeatures that are of marginal relevance to the current thought. Neurds do not reside in any 
particular portion of memory. The subset of neural cliques that count as neurds is defined by 
context, and shifts constantly. For each situation one might encounter a different group of neurds 
is involved. 
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The explanation of insight proposed here follows naturally from the above-mentioned 
discovery of neural cliques that respond to varying degrees of specificity or generality, and the 
evidence for contextual focus, as well as the well-established phenomenon that activation of an 
abstract or general concept causes activation of its instances through spreading activation 
(Anderson, 1983; Collins & Loftus, 1975).1 Given that some neural cliques respond to specific 
aspects of a situation and others respond to more general or abstract aspects, we have a 
straightforward mechanism by which contextual focus could be executed. In associative thought, 
with more aspects of a situation taken into account, more neural cliques are activated, including 
those responding to specific features, those responding to abstract elements, and those they 
activate through spreading activation. Activation flows from the specific instance to the abstract 
elements it instantiates, to other instances of those abstract elements. The neurds concept thus 
provides a way of referring to neural cliques that respond to features of these other instances that 
are not features of the original instance.  

It is likely that most of the time, for most individuals, neurds are excluded from activated 
cell assemblies. Their time to shine comes when one has to break out of a rut. In associative 
thought, broad activation causes more neural cliques to be recruited, including neurds. This 
enables the next thought to stray far from the one that preceded it, while retaining a thread of 
continuity. The associative network can be not just penetrated deeply, but traversed quickly, and 
there is greater potential for representations to overlap in ways they never have before. Thus the 
potential to unite previously disparate ideas or concepts is high. 

 
Example and Analysis of an Instance of Insight 

We have examined the relationship between contextual focus and the structure of human 
memory. This synthesis will now be applied to the analysis of a creative act of a sort that is more 
artistic than the waterskiing example used previously. In keeping with the view that everyone is 
creative (Beghetto & Kaufman, 2007; Gardner, 1993; Runco, 2004), the creative act that we 
analyze is not an earthshaking achievement but a simple event in the life of an everyday person.  

The situation that motivates the creative act is the following. Amy, an art student, wants 
privacy in her bedroom but the only kind of curtains her landlord can afford are ugly and so thick 
they would block out all the light and her plants would die. She asks around for secondhand 
curtains trying to solve the situation through a straightforward deductive process. Neural cliques 
that encode memories of various curtains, and other sorts of window coverings such as blinds, 
are activated. Neurons that respond to attributes of desirable curtains, such as ‘soft’, ‘hangs (on 
curtain hooks)’, ‘translucent’, ‘large’, and ‘colorful’, are activated. 

Her inability to solve the problem rationally eventually leads to a spontaneous and 
subconscious defocusing of attention. She enters an associative mode of thought, and her 
activation function becomes flat, such that the associative structure of her memory is more 
widely probed. Activation of neurons that respond to attributes such as ‘soft’ that are irrelevant 
to her goals (of obtaining privacy while retaining sufficient light for the plants) decreases, but 
activation of neurons that respond to attributes such as ‘translucent’ that are relevant to these 
remains high. Goal-relevant neurds get recruited moving further down Lin et al.’s (2006) feature-
encoding pyramid, and her memory begins to respond to not just specific aspects of her situation 
(i.e., the need for curtains) but to abstract aspects of her situation (i.e., the need for privacy).  

Amy starts considering not just different kinds of window coverings such as curtains and 
blinds, but other attractive ways of covering the window that would allow light to come through. 
Because memory is content-addressable (i.e., there is a systematic relationship between the 
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content of an item and the locations in memory it activates), neural cliques that respond to 
‘translucent’ and ‘colorful’, now activated in the context of needing to cover the window, had 
previously encoded memories of certain acrylic paints that might be opaque enough to provide 
privacy yet translucent enough to let in light. Activation spreads from neural cliques that respond 
to ‘translucent’ and ‘colorful’ to neural cliques that respond to other aspects of these acrylic 
paints, causing her to consciously think of them in this new context, resulting in reconstructive 
interference of CURTAIN and PAINT to give something like ‘CURTAIN-PAINT: the idea of 
using paint to accomplish the job of curtains. It has some attributes of curtains (e.g., window 
coverage) and some attributes of paint (e.g., hardens upon application) as well as the attributes 
they both share that allowed the association to be made. Since she is an artist, she could have 
first thought of the idea of placing a painting in front of the window, realizing that would not let 
any light in at all, and subsequently realized she could paint directly on the window2. 
Alternatively, it could have been the more general concept WINDOW COVERING that 
combined with PAINT to give WINDOW PAINT. In either case, the resulting concept 
combination is new because this particular distributed set of neurons has never been activated 
together before as an ensemble. 

Having hit upon this idea of painting the window, she must determine if it will work in 
practice. Although in the short run a flat activation function is conducive to creativity, 
maintaining it would be impractical since the relationship between one thought and the next may 
be remote; thus a stream of thought lacks continuity. Access to obscure associations might at this 
point be a distraction. Thus, now she enters a more analytic mode by ‘decruiting’ the neurds, 
thereby narrowing the region of memory that gets activated. Thought becomes more logical in 
character because the activation function becomes spikier, thereby affording finer control; fewer 
locations release their contents to participate in the formation of the next thought. Experimenting 
with different paints, colors, and brush styles, Amy finds paints that let in light while obscuring 
visibility.  

Once she knows it will work, the actual painting of the window offers more room for 
creativity, and she returns to a more associative mode of thought. By shifting back and forth 
along the spectrum from associative to analytic as needed, the fruits of associative thought 
become ingredients for analytic thought, and vice versa. 

 
Mathematical Description of Creative Insight 

We have shown how it is possible to provide a neurobiological account of creative insight. 
This account is strengthened by the fact that it dovetails with a complementary avenue of 
research aimed at developing a mathematical account of insight. Since insights involve putting 
concepts together in new ways or placing them in new contexts, a comprehensive theory of 
creativity must incorporate a solid theory of how concepts interact. However, people use 
conjunctions and disjunctions of concepts in ways that violate the rules of classical logic; i.e., 
concepts interact in ways that are non-compositional (Barsalou, 1987; Bruza, 2009, 2010; 
Hampton, 1987; Osherson & Smith, 1981). This is true both with respect to properties (e.g., 
although people do not rate ‘talks’ as a characteristic property of PET or BIRD, they rate it as 
characteristic of PET BIRD), and exemplar typicalities (e.g., although people do not rate ‘guppy’ 
as a typical PET, nor a typical FISH, they rate it as a highly typical PET FISH). Because of this, 
concepts have been resistant to mathematical description. 

It has been demonstrated that the non-compositional behavior of concepts can be modeled 
using a generalization of the formalisms of quantum mechanics (Gabora & Aerts, 2002, 2009; 
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Gabora, Rosch, & Aerts, 2008; Aerts & Gabora, 2005a,b; Veloz, Gabora, Eyjolfson, & Aerts, 
2011). The state⎟ψ〉 of an entity is written as a linear superposition of a set of basis states {⎟φi〉} 
of a complex Hilbert space H. Hence ⎟ψ〉 = Σici⎟φi〉 where each complex number coefficient ci of 
the linear superposition represents the contribution of each component state ⎟φi〉 to the state 
⎟ψ〉 of the entity; more specifically, the square of the absolute value of each coefficient equals 
the weight of the corresponding component basis state with respect to the global state. The 
choice of basis states is determined by the observable to be measured, and the basis states 
corresponding to this observable are called eigenstates of the observable. Upon measurement, the 
state of the entity collapses to one of the eigenstates.  

In the quantum inspired State COntext Property (SCOP) theory of concepts, the basis states 
represent states or exemplars of a concept, and the measurement is the context that causes a 
particular state to be evoked. A concept is defined in terms of (i) its set of states or exemplars Σ, 
each of which consists of a set L of relevant properties, (ii) set M of contexts in which it may be 
relevant, (3) a function ν that describes the applicability or weight of a certain property for a 
specific state and context, and (4) a function µ that describes the transition probability from one 
state to another under the influence of a particular context. 

Let us now see how the example would be described using the formalism. The concept 
WINDOW COVERING consists of the set Σ of states such as CURTAIN, BLINDS, and so 
forth. For simplicity, let us say that one’s initial conception of WINDOW COVERING, 
represented by vector |w〉 of length equal to 1, is a superposition of only two possibilities. The 
possibility that it is a blind is denoted by unit vector |b〉. The possibility that it is a curtain is 
denoted by unit vector |c〉. This can be described by the equation |w〉 = d0|b〉 + d1|c〉, where d0 and 
d1 are the default amplitudes of |b〉 and |c〉 respectively. States are always represented by unit 
vectors, and all vectors of a decomposition such as |b〉 and |c〉 have unit length, are mutually 
orthogonal and generate the whole vector space, thus |d0|2 + |d1|2 = 1. 

Amy realizes that she must constrain the window covering to be inexpensive, and this may 
be challenging, so she shifts to a more associative mode of thought. The context inexpensive is 
denoted i. Since Amy knows that blinds are expensive. Therefore, i0, the new amplitude of |bi〉, 
equals 0. Since Amy does not know of any inexpensive curtains, i1 is close to 0. Activation of the 
set L of desirable properties of WINDOW COVERING, e.g., ‘translucent’ but not ‘transparent’, 
spreads to other concepts in the individual’s associative network for which these properties are 
relevant. Concepts that share these properties with CURTAIN and BLINDS become candidate 
members of the set Σ of relevant states of WINDOW COVERING. It becomes apparent that the 
concept WINDOW COVERING in the context inexpensive, denoted |wi〉, has a third term, i.e., 
|wi〉 = i0|bi〉 + i1|ci〉 + i2|pici〉, where |pici〉 represents the possibility that PAINT functions as a 
WINDOW COVERING.  

Since PAINT makes an inexpensive WINDOW COVERING, |i3| is large. Therefore, in the 
context inexpensive, the concept WINDOW COVERING has a high probability of collapsing to 
WINDOW PAINT, an entangled state of the concepts WINDOW COVERING and PAINT. 
Entanglement introduces interference of a quantum nature, and hence the amplitudes are 
complex numbers (Aerts, 2009). If this collapse takes place, WINDOW PAINT is thereafter a 
new state of both concepts WINDOW COVERING and PAINT.  

This example shows that the above neurobiological account of insight, based on context-
dependent overlap of properties, is amenable to formal mathematical modeling. It also shows 
that concept combination always entails, at least to some extent, both exploration and 



How Insight Emerges in a Distributed, Content-addressable Memory 

 12 

transformation of conceptual spaces. CURTAIN combined with PAINT under the context 
inexpensive when the inventor of CURTAIN PAINT explored the space of possible uses of a 
worn out CURTAIN. Moreover, when CURTAIN combined with PAINT under the context 
inexpensive, the conceptual space associated with items that could be considered inexpensive 
was altered to include a new kind of PAINT. Note how in the quantum representation, 
probability is treated as arising not from a lack of information per se, but from the limitations of 
any particular context (even a ‘default’ context). 

 
Summary and Conclusions  

This chapter provides a tentative but sound and plausible explanation of how the creative 
process works at the level of distributed ensembles of neurons. We believe that it at this level 
that one can gain insight into what we call the magic of creativity: the ability to pull out of 
memory something new and appropriate that was never explicitly stored there in the first place. 

The brain is able to do this because of the ingenious way that experiences are laid down in 
memory. First, representations are distributed across assemblies of neurons, sometimes referred 
to as ‘neural cliques’. Each neuron is ‘tuned’ to respond maximally to a particular microfeature: 
a particular shade of pink for example, or something more abstract. It responds less reliably to 
nearby shades of pink. This leads to another basic principle of memory, coarse coding: each 
neuron participates in the encoding of many experiences. Thus a memory of a particular event 
involves activation of not one neuron but a constellation of them. Memory is also content-
addressable, meaning there is a relationship between the content of an item, and which neurons 
respond to it. Thus similar events activate overlapping constellations of neurons. This means that 
items are encoded in memory not just in terms of their features, but in terms of how they relate to 
each other; the associative structure of the brain reflects underlying statistical regularities in 
ones’ experiences! It is this implicit knowledge of how things are related, indeed related in ways 
you may never have consciously noticed, that is called upon in the creative process.  

Because of the distributed, content-addressable architecture of memory, multiple items may 
be evoked simultaneously and merge to give rise to a thought that bears some similarity to these 
multiple items, but that is identical to none of them. The multiple items may be so similar to each 
other that you never detect that the recollection is actually a blend of many items. In this case the 
distributions of neurons they activate overlaps substantially. Or they may differ in mundane 
ways, as in everyday mindwandering. Alternatively, they may be superficially different but 
related in a way you never noticed before. In this case the distributions of neurons they activate 
overlap only with respect to only a few features that in the present context happen to be relevant. 
This phenomenon has been termed reconstructive interference, and the result may be an insight 
that combines elements of both. The greater the extent to which they differ, the greater the extent 
to which the insight will appear to be an instance of transformative rather than mere exploratory 
creativity.  

When one is stumped and in need of a creative solution, or in a situation conducive to 
creative self-expression, one defocuses attention and enters a more associative form of thought, 
through a process that is believed to work in a manner similar to flattening the activation 
function in a neural network. Associative thought causes activation of not just neural cliques that 
respond to situation-specific aspects of an experience, but neural cliques that respond to general 
or abstract aspects. Those neural cliques that respond to atypical aspects of the situation, and thus 
that are activated in associative but not analytic thought, are referred to as neurds. Items encoded 
previously to neurds are superficially different from the present situation yet share aspects of its 
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deep structure. Therefore, the recruitment of neurds increases the probability of forging 
associations that are seemingly irrelevant yet vital to the creative task. By responding to abstract 
or atypical features of the situation, neurds effectively draw remote associates into the 
conceptualization of the task. If an insightful association is made, one may enter a more analytic 
or convergent mode of thought through a process akin to increasing the spikiness of the 
activation function, by de-activating neurds. Analytic thought discourages potentially disruptive 
associations and is thus conducive to simply getting a job done.  

It is important to stress that the neurobiological interpretation of associative thought given 
here does not entail making all associated items within a given semantic distance more accessible 
(like a diverging beam of light), but only those that are contextually relevant. Moreover, it does 
not necessarily entail evoking multiple items. It may evoke just a single item, something that had 
never been explicitly stored in memory, that merges multiple previously encoded items together.  

It is interesting to consider the long-term consequences of the proclivity to shift readily into 
a state of defocused attention. More features of any given experience evoke ‘ingredients’ from 
memory for the next experience. Some aspects of the external world get ignored because one is 
busy processing previous material, but if something does manage to attract attention, it tends to 
be considered from multiple angles before settling into a particular interpretation of it. The end 
result is that one’s understanding of the world becomes increasingly unique, and this uniqueness 
may be reflected in one’s creative output. 

The explanation of creativity put forward here is incomplete, particularly with respect to the 
role of motivation and emotions. Moreover, a complete neuroscientific account of creativity will 
include an explanation of how events at the level of distributed cell assemblies dovetail with, on 
the one hand, activity in particular areas of the brain, and on the other hand, the intracellular 
events that make the formation of new representations possible. We believe, however, that some 
of the more mysterious aspects of creativity have been solved. 
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Figure 1. Schematized drawing of a portion of a distributed associative memory activated by the 
thought of snow skiing in an analytic mode of thought. Each small black-ringed circle represents 
a feature that a particular neuron responds to. The white region indicates the portion of memory 
that is activated. The activated cell assembly, indicated by the large grey circle, consists of only 
one neural clique, indicated by the dashed circle. It is composed of neurons that respond to 
typical features of snow skiing such as the flatness of the skis and the pointiness of the poles. 
Non-activated neural cliques are indicated by dotted gray circles.  
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Figure 2. In an associative mode of thought, the portion of memory activated by the thought of 
snow skiing is larger than it was in an analytic mode, as indicated by the size and diffuseness of 
the white region. The activated cell assembly, indicated by the large oval, now contains more 
than one neural clique. The initially activated neural clique is indicated by the dashed circle, and 
the neurd is indicated by the double circle of dashes. The neurd is composed of neurons that 
respond to features that are not typical of snow skiing such as ‘sleekness of water’ but that are 
relevant to the invention of waterskiing. Note that under a different context, such as the task of 
making skis for a doll, the neurd might have been a different neural clique, containing the neuron 
that responds to ‘miniature’. 
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Notes 
                                                

1 Thus for example, based on a set of free association norms data collected from 6,000 
participants using over 5,000 words, the probability that, given the word PLANET, the first word 
that comes to mind is EARTH is .61, and the probability that it is MARS is .10 (Nelson, 
McEvoy, & Schreiber, 2004). Note that there is some empirical support for an alternative to 
spreading activation as an explanation for this kind of association data, referred to as ‘spooky 
activation at a distance’ (Nelson, McEvoy & Pointer, 2003). 
 
2 This possibility for how the idea came about was suggested by Richard Gabriel.  


