
THE CONSTRUCTION OF A C++ TEACHING AIDE

by

Elizabeth Heithoff

A thesis submitted in partial fulfillment of the requirements
for graduation with Honors in the Department of Computer Science

Ramon Lawrence

Honors Thesis Supervisor

May, 2003

All requirements for graduation with Honors in the
Department of Computer Science have been completed.

Douglas Jones

Undergraduate Chair of Computer Science

ABSTRACT

Thesis: Constructing the hardware, software, and architecture to write a dynamic

web application to be used as a C++ teaching tool.

This paper discusses the details of an undergraduate honors project involving the

construction of a complete application system including the hardware, operating system,

and software. The application system is used as a teaching tool for a computer science

course, in order to motivate students to take a more active role in the course. The first

goal of the project was to build a computer on both the hardware and software level that

could be used as a web server for the application. The next goal was to actually create

the web site that would allow students to upload their code to the server, compile the

code, and use the code to host a tournament between the students in the class.

The application is dynamic and utilizes a database. The application also requires

many different web-programming languages to implement the different features of the

site. An important design challenge is making the web site look professional, but still be

appealing to the students who use it. The result was a complete application built from the

ground-up that was a valuable C++ teaching tool and interesting project that motivated

and encouraged students.

TABLE OF CONTENTS

SECTION 1: INTRODUCTION ..1

SECTION 2: MOTIVATION ...2

SECTION 3: PROJECT SUMMARY ...3
Contributions ..3

SECTION 4: BACKGROUND ...4
Development Process and Goals ..4
Open Source Software and Languages ...6
Architecture Overview..8
Critical Mass Rules and Examples ...9
Platform Configuration...10

SECTION 5: SYSTEM DESCRIPTION ...11
Database Design ...11
HTML Design...12

Authentication ...13
Student Code Upload ..16
Playing Games ..18
Visualizing Games Played ..21

SECTION 6: RESULTS AND USAGE..24

SECTION 7: CONCLUSION ...26

SECTION 8: FUTURE WORK..27

REFERENCES ..28

APPENDIX A: ACCUMULATING THE PARTS ...29

APPENDIX B: ASSEMBLING THE PARTS...30

APPENDIX C: INSTALLING THE LINUX OPERATING SYSTEM......................32

APPENDIX D: INSTALLING APACHE..33

APPENDIX E: INSTALLING MYSQL ..34

APPENDIX F: INSTALLING PHP ...36
Problems encountered while installing php..36

APPENDIX G: INSTALLING MYSQL++ ...38

APPENDIX H: GAMECONTROLLERTEMPLATE.CXX39

APPENDIX I: STUDENT SURVEY..45

E. Heithoff 1

SECTION 1: INTRODUCTION

Computer programmers are essential to the technological advances of a company.

However, they require system administrators who are knowledgeable about the systems

on which the programs run. Introductory computer science courses primarily focus on

programming. In order to gain experience with commercial hardware and software, it is

necessary to perform an independent honors project or work in a business environment.

This honors project provides practical experience in hardware setup and configuration. It

also provides exposure to infrastructure-related software applications such as Apache,

MySQL, and the Linux operating system. Lastly, it provides an opportunity to develop a

complete web application that will directly use the infrastructure. While providing many

additional educational experiences to supplement course work, the project also has

practical importance. It is used for teaching C++ to Computer Science III students by

creating a challenging and exciting project as the final assignment in that class. The

remainder of this thesis will examine motivation for the project, a project summary,

background information, a system description, the results, the conclusions, and future

work.

E. Heithoff 2

SECTION 2: MOTIVATION

In an ideal situation, programmers within a company that create and maintain

applications would completely understand the platform on which the programs run.

However, in many large corporations, there are two completely separate sides of the IT

department; the developer side and the architecture side. One of the major problems that

employees on the architecture side encounter is that programmers do not fully understand

the web architecture. This can result in many problems related to security, efficiency,

and reliability. This project allows the ability to learn how the separated tasks of the IT

department can be brought together.

Currently, students of Computer Science III write several projects in C++. The

web application constructed in this work helps to motivate the students to create more

efficient projects and gives them something to look forward to once their project is

completed. By providing an interesting assignment involving games, competition, and

interaction, the web application motivates students to do their best and makes the course

more interesting. The competition provides an opportunity for student-to-student

constructive criticism. This project provides a valuable teaching tool for the students of

Computer Science III.

E. Heithoff 3

SECTION 3: PROJECT SUMMARY

Thesis: Constructing the hardware, software, and architecture to write a dynamic

web application to be used as a C++ teaching tool.

There are two goals associated with this project. The first is to gain knowledge

and experience with the infrastructure associated with web development. This involved

gathering the hardware for a powerful machine, assembling the parts, and then installing

the software necessary to host a web site. The software included Linux, Apache,

MySQL, and PHP.

The second goal is to develop a web application that allows students of Computer

Science III to upload their code for Critical Mass and play their classmates on the

Internet. This was accomplished using HTML, PHP (necessary for communication to the

MySQL database), C++, and a JAVA applet. The applet allows the students to go back

and watch the games they played. The C++ program is used to “glue” together the

programs of the two students who wish to challenge each other.

Contributions

The contributions of this work include experience with building and assembling

hardware, installing the Linux operating system and related software, constructing a

game site, learning HTML and PHP, and creating a valuable project and learning

experience for Computer Science III students.

E. Heithoff 4

SECTION 4: BACKGROUND

Development Process and Goals

There are three components of this project. Project ideas are generated when a

user makes a request. In this situation, there was a need for a web application to be used

as a teaching tool. So the first component is the application, design, and development. It

is this component that is visible to the students. The students are using the application for

a game they programmed called Critical Mass. Critical Mass is a variation of

Minesweeper and is played by placing bombs on a game board, attempting to blow up all

of your opponent’s pieces. The students and the professor of this course needed a web

application that would allow the students to log on to the site. Then the students needed

to be able to upload their code to be saved to the web server. They also needed to be able

to challenge other student’s code, in a tournament environment. The games that were

played when one student challenged another also needed to be available for later viewing.

One design limitation is that student code is written in C++, but it is difficult to use

dynamic C++ code on the World Wide Web and do graphics. The application also has

other common options such as changing their password.

Once the design goals have been determined, it is necessary to get a view of what

the application will actually look like. When a student clicks on a link to this application,

the first screen they see is a login screen. Once properly logged in, the student is

presented with a variety of choices, including uploading their code, playing a game,

changing their password, and viewing previous games. They are able to see directly

where they stand compared to other students in the class as far as who has won the most

games. They are able to challenge students within five rankings of themselves. In order

to challenge other students, they click on the student’s name. This will trigger a game to

be played. The application allows a student to challenge another person’s program,

E. Heithoff 5

computer versus computer. Once the game is finished, the student can request to see

what went on during the game. The game will then be played back for them with a

similar GUI as in their real program. One other option for the students is the ability to

play human versus human.

Once a problem is identified and specifications are made about what must be done

in order to suit the user’s needs, it is necessary to identify what tools are required to

support the application. The second component to this project is the hardware and

software infrastructure that supports the application. This involves all the components of

the application that need to be created, and also how they work together.

While developing this application, many challenges were encountered. The first

was to find out how to communicate between a program written in C++ and a MySQL

database. The research done showed that it was necessary to use the MySQL++ library (

see Appendix G). While the syntax of database communications varied slightly from that

used with PHP, the queries are essentially the same. Another challenge was to allow

students to play each other manually. This challenge was accomplished by using Java

GUI within the Java Applet.

Lastly, once it has been decided what languages the program will use, it is

necessary to choose the appropriate platform on which to run the program. The first step

is to acquire and assemble the parts necessary for a high-performance machine. The

infrastructure configuration will consist of many parts. It was necessary to use open

source software for the development of this application since no other funding was

available. In order to write the programs, a basic editor was used that comes with Linux

(gedit). Apache is an open source program that is used as a web server for this project.

The database is MySQL. Finally, the operating system on which the whole project runs

is Linux. Linux is also open source software.

E. Heithoff 6

Open Source Software and Languages

A major part of this project is to only use open source software. In order to

determine which software was appropriate, some research was necessary. This section is

provided to give the reader some background information on the tools used to complete

the project. The operating system used is Red Hat Linux. The web server software used

is Apache. The database used is MySQL. The different web languages used include

HTML and PHP.

The operating system used is Red Hat Linux version 7.3. Linux is a free

operating system that was created by Linus Torvalds in 1991. Linus started Linux by

writing a kernel, which is the heart of the operating system, mostly from scratch, but

partly by using publicly available software. After that, he released it out to his friends

and other computer hackers on the Internet in order for them to help him enhance it.

Documentation on Red Hat Linux can be found at www.redhatlinux.com.

The web server used is Apache. Apache is an open-source HTTP server that can

be used with modern operating systems such as UNIX, LINUX, and Windows NT. The

goal of Apache is to provide a secure, efficient, and extensible server that provides HTTP

services in sync with the current HTTP standards. Apache has been the most popular

web server on the Internet since April of 1996. The August 2002 Netcraft Web Server

Survey found that 63% of the web sites on the Internet are using Apache, thus making it

more widely used than all other web servers combined. More documentation on Apache

can be found at http://httpd.apache.org.

As a base language for this web site, HTML is used. HTML stands for Hyper

Text Markup Language. There are two essential features of HTML, hypertext and

universality. Hypertext allows you to create a link in a web page that takes a visitor to

http://www.redhatlinux.com/
http:/httpd.apache.org

E. Heithoff 7

any other web page on the Internet. HTML is also universal because since HTML

documents are saved as ASCII or Text Only files, virtually any computer can read a web

page, regardless of the operating system or browser. HTML allows the developer to

format text, add graphics, sound, and video to a web page in such a way that all users can

view it. The key to HTML is the use of tags, which are keywords enclosed in tags. For

example, to make a word a link you would do the following:

Go to My Web Page

Since HTML is only good for formatting web pages and linking several pages

together, it was necessary to use another web development language to communicate

with the database. For this, PHP is essential. PHP is a scripting language similar to

languages such as C, Perl, and Pascal. This web site uses version 4.1.2 of PHP. PHP

stands for Hypertext Preprocessor. PHP is generally embedded or combined with

HTML. PHP code that is embedded in HTML pages is processed by the PHP module of

Apache. PHP has many libraries that make it possible to connect to databases. More

documentation on PHP can be found at www.php.net.

The database chosen is MySQL. MySQL is open source computer software that

allows the user to create, maintain, and manage electronic, relational databases. A key

feature of MySQL’s performance design goals is multithreading, or the ability to perform

many tasks at the same time. For this website, MySQL version 3.23 is used. The

Structured Query Language (SQL) is used to read and write to MySQL databases. SQL

allows a person to search for, enter, modify, and delete data in a database. PHP uses SQL

commands to communicate with the MySQL database. In addition, MySQL++ allows

the communication between the MySQL database and a C++ program. More

documentation on MySQL and MySQL++ can be found at www.mysql.com.

http://www.php.net/
http://www.mysql.com/

E. Heithoff 8

Architecture Overview

The student login information is stored in a MySQL database. Also stored in the

database is information including their number of wins, losses, and their rank in

relationship with the rest of the class. Students upload code written in C++. That code is

then stored on the web server for future use. The web server serves pages of HTML and

Java Applets, which are embedded with PHP code. The PHP code is used for user

interface and allows users to dynamically challenge other players and connect and update

the database. PHP also communicates with the command line of Unix in order to

compile and run the game controller. The game controller interacts with both of the

students’ code, prompting each separate C++ program for the next move. After the game

is played, by using MySQL++, the game controller inserts a string to the database

containing all the moves that were made throughout the game and the outcome of the

game. This way, once the game is finished, the student can opt to play back the game.

Figure 1: System Architecture

Web Browser

Client Machine Linux Server

Apache
Web

Server

Unix
Command

Line

MySQL
Database

Game
Controller

C++

Web Page

Applet
PHP
Module

E. Heithoff 9

All basic web pages are done in HTML and PHP, and the student can view game

results using the Java applet. This Java applet has also been extended to allow human-

vs.-human games to be played. The way in which the C++ code and the Java code is

linked is unique, as well as the dynamic way the C++ code is compiled. This architecture

is illustrated in Figure 1.

Critical Mass Rules and Examples

It is important to understand some information about the course Computer

Science III and the game Critical Mass. Computer Science III is a course offered at

University of Iowa and it is part of the required curriculum of the computer science

major. Computer Science III involves teaching C++ and data structures such as linked

lists, stacks, and queues. Another topic covered in Computer Science III is the concept of

game trees and game intelligence. As a final project for the course Computer Science III,

students are asked to write the code for the game Critical Mass.

Critical Mass is a game of position, territory, and material. It is a game of pure

skill as are other games such as go, chess, checkers, and tic-tac-toe. It is a challenging

game that requires a great deal of concentration to play well. It can also be a frustrating

game as position, territory, and material can be drastically altered with a single move.

The object of the game is to completely remove all of your opponent’s pieces or bombs

from the game board. There are several rules of the game. The board consists of a

rectangular array of cells, five rows and six columns. Each cell may contain zero or more

pieces. The pieces are of two different colors, one belonging to each player. All pieces

in a cell are always of the same color. At the start of the game, all cells on the board

contain zero pieces. There are two players, who make moves alternately. To move, a

player must place a piece of her own color into any cell which does not contain a piece of

the opponent’s color. If the number of pieces in a cell becomes greater than or equal to

the number of adjacent cells, then that cell “explodes.” When a cell explodes, the pieces

E. Heithoff 10

in that cell are removed, one additional piece is added to each adjacent cell, and all pieces

in adjacent cells become the color of the player whose move caused the explosion.

Explosions may cause subsequent explosions. If an explosion causes additional

explosions, then the new explosions happen simultaneously, not by means of a wave-like

chain reaction. The game ends when, after any move except the first, all pieces on the

board are the same color. The player corresponding to that color wins.

Platform Configuration

The first task of this project was to accumulate the parts in order to build a

machine that could serve as a web server. The parts were all purchased from

www.mwave.com and were recommended by an employee of Union Pacific Railroad.

For a detailed listing of the parts that were purchased, see Appendix A.

Once all of the parts were purchased and gathered together, it was necessary to

assemble them together to make the computer work. For a detailed step-by-step process

of how the computer was assembled, see Appendix B. The machine was used for the

majority of the development of the project, but the final live version of this application is

hosted at IDEA lab.

Once the hardware is set up and seems to be working properly, it is necessary to

first install the operating system, and then the rest of the software necessary to complete

this project. For details instructions on how to install the software, see Appendices C, D,

E, F, and G.

http://www.mwave.com/

E. Heithoff 11

SECTION 5: SYSTEM DESCRIPTION

Once all the parts were assembled and the software components were installed, it

was time to begin developing the web pages that would later become a dynamic game

playing application. In order to start with a base in order to build on, the first step was to

build a database to store information. Then, use HTML to develop the look and feel of

the application.

Database Design

The database used for this project is entitled CriticalMass and contains two tables.

The two tables can be visualized as the following:

Student

USER_ID PSWD F_NAME L_NAME WINS LOSSES TIES RANK TOTAL_GAMES FILE_NAME PLAYING LAST_CHAL

GamesPlayed

PLYR_1 PLYR_2 G_RESULT GAME_STRING G_NBR

The first table, Student, is used for identification purposes, such as for the login page, and

will be used for statistics, which will be used when students want to challenge each other.

The field PLAYING is used to enforce the rule that a player can only be in one game at a

time. The field LAST_CHAL is used to store the last time that a player challenged

another player. This ensures that we can monitor how often students challenge other

students. Currently, the delay is 1-2 minutes between challenges. The second table,

GamesPlayed, is used for storing the games that have been played so that students can

E. Heithoff 12

see a listing of the games they have played and can chose to watch them after they have

been played.

HTML Design

The layout of the web pages was modeled after the web site www.yahoo.com, and

more specifically, the finance page. The first page that you are introduced to is the index

page, hosted at www.cs.idealab5.uiowa.edu (see Figure 2), which uses an HTML image

tag to include a picture of a Critical Mass game board. Once the user logs in to the

application, they are presented with many options, including uploading code, playing

games, and replaying games.

Figure 2: Index Page

http://www.yahoo.com/

E. Heithoff 13

Authentication

The user is prompted to click on a link in order to login to the website. In order to

ensure that this application is secure, a PHP script is included at the top of every secure

page so that a user cannot access the URL unless they are properly logged in. If a user

does try to access a URL without being logged in, then they are redirected to the login

page by the authentication script, auth.inc. The code for the authentication script was

taken from Web Database Applications with PHP & MySQL book, as well as the code

for the login and logout pages. The logic of the code for the authentication pages centers

on using HTTP session variables and headers. HTTP session variables are variables that

are created by registering them with the session, and then discarded as the user logs out

by unregistering the variables. The headers are used for the redirects, which send the

user to the login page if they are not already registered with the session.

When a user is taken to the login page, they get the first sight of the look and feel

of the website (see Figure 3). If no session variables have been set yet, then the standard

login page is displayed. Once the user properly enters their user id and password and

clicks on the button to login, they are taken to the main page of the application. If the

user login fails for whatever reason, the HTTP session variables “errorMessage” or

“loginMessage” are set, and an error message is displayed to the user. Then, they are

asked to login again. Examples of messages that could be displayed to the user include

“Could not connect to the critical mass database under that user name” or “User (user

name here) has logged out” or “You have not been authorized to access the URL (URL

they tried to access here).” The logic used to correctly authenticate the user centers

around looking up the username that the user entered and comparing the password they

entered with the password in the database. If they match, they are authenticated, if they

do not match, the user is prompted with an error message and asked to try again.

E. Heithoff 14

Figure 3: Login Page

Since PHP is used for the majority of the pages on this web site, headers allow

both the login prompt and the main page to be in one file of code. Depending on the

different cases, appropriate functions are called to display the necessary code. For

instance, once the user’s login information has been accepted, the function,

logged_on_page, is called with the parameter “currentLoginName.” The page

displayed has five major components (see Figure 4). The first component is the top of

the page. The user’s name is displayed, along with graphics of the Critical Mass game

board, and a link to the Red Hat Linux website. There is also a link to logout from the

site, and the date and time is displayed.

E. Heithoff 15

Figure 4: Main Page

The second component of the page is the change password functionality. This

allows the user, at any time, to change their password. Since it is not necessary for this

site to be high-security, there are no limitations set for the passwords for this site. The

only limitation results from the way the database is set up, which requires that the

password be 10 characters or less. The authentication process does require that your

password is case sensitive. On the main page there is a form that asks the user for their

old password, and to enter their new password twice. When the user clicks on submit,

the form takes them to the next page chpass.php. This page connects to the database

and compares the old password that the user entered with the password in the database.

If the old password is correct, then it compares the two new passwords that the user

entered. Again, if those match up correctly, then the database is updated with the new

E. Heithoff 16

password. For each case, messages are displayed to the user accordingly. At the bottom

of the page, there is a link to go back to the main page to perform another task, try

changing their password again, or to logout.

Student Code Upload

Uploading game code is the third task that a user can complete on this web site.

This operation also uses a form, but includes a browse button that allows the user to

search on their computer for the file they want to upload. Once they have found the file,

it is automatically entered into the field, and the user just has to click on the send file

button. Clicking on send file sends the user to another page, codeUpload.php.

CodeUpload.php first connects to the database, and then if a connection is made, it

attempts to upload the file specified and save it to a temporary directory. An important

note is that the user is only allowed to upload files that are of type application/octet-

stream, which includes files with the extension .h. If the user uploaded the correct type

of file, then the file is copied to the student code directory where it is combined with a

sample C++ program, testStudentCode.cxx, which verifies that their code

compiles correctly. If the code has errors when it is compiled, then those errors are

printed to the screen and the temporary file is deleted (see Figure 5). If there are no

errors, then the file is kept in the directory.

E. Heithoff 17

Figure 5: Code Upload Errors

Now is also when the user gets their initial rank in the tournament. If the user has

not yet been assigned a rank, then they get a rank one higher than the highest rank given

out so far. This is justified by the fact that the first student to upload their code should be

given the rank number one. However, if the user has already been given a rank when

they upload their code, then their rank just stays the same as it was. This way, if a user

wants to make code changes and re-upload their code, they do not loose their spot in the

tournament. This also ensures that there will always be one student who is ranked

number one. If the user’s code does not compile, then the errors that occurred are

displayed for the user and the file that was uploaded is deleted. Similar to the change

password operation, there is a link back to the main page on the bottom of

codeUpload.php.

E. Heithoff 18

Playing Games

The final and most important component of this web site is the part that actually

plays the games. The main page displays a table that lists users and their ranks. A player

can challenge any player within 5 ranks of the user. This is done to ensure that the user

does not challenge classmates that are ranked far below or above him or her. All user ids

within playing range, other than the user who is currently logged in, are linked to the next

page. All users are listed, except for those that have not yet uploaded their code. By

clicking on a classmate’s user id, the user is sent to the page play.php. Play.php

first queries the database to make sure that the student is not currently involved in a game

and then makes sure that they have waited the appropriate amount of time between

challenges. Then play.php searches for the two player’s code, compiles them with the

gameController and then runs the gameController. Figure 6 shows the basic

code for the gameController. See Appendix H for the complete

gameController. Once the game is finished, the result is displayed (see Figure 7).

while (b.getStatus() ==0)
{ startclock = clock(); //Start sys clock

row = -1; col = -1;
temp = b;
p1.makeMove(temp,1, row, col);

endclock = clock(); //End sys clock
if(endclock-startclock > timeAllowance)
{ cout<< "PLAYER1 is taking too long to make moves!"<<

endl;
cout << (endclock-startclock)/1000000 << " seconds"

<< endl;
winner = 2;
break;

}
if(insertBomb(b,1, row, col))
{

moves++;
std::string Srow = convertToString(row);
std::string SCol = convertToString(col);
gameString = gameString + Srow + SCol;

}
else
{ winner = 2;

cout << "Tried to insert invalidly player 1" << endl;

E. Heithoff 19

cout << "Game string: " << gameString << endl;
cout << "Invalid move attempted - row: " << row << "

col: " << col << endl;
break;

}

if(b.getStatus()==0)
{ startclock = clock(); //Start sys clock

row = -1; col = -1;
temp = b;
p2.makeMove(temp,2,row,col);
endclock = clock(); //End sys clock
if(endclock-startclock > timeAllowance)
{ cout<< "PLAYER2 is taking too long to make

moves!"<< endl;
cout << (endclock-startclock)/1000000 << "

seconds" << endl;
winner = 1;
break;

}

if(insertBomb(b,2, row, col))
{

moves++;
std::string Srow = convertToString(row);
std::string SCol = convertToString(col);
gameString = gameString + Srow + SCol;

}
else
{ winner = 1;

cout << "Tried to insert invalidly player 2" <<
endl;

 cout << "Game string: " << gameString << endl;
 cout << "Invalid move attempted - row: " << row

<< " col: " << col << endl;
break;

}
}

}

Figure 6: Game Contoller Main Loop

The gameController is a template written to put together two student’s code.

The gameController includes the .h files uploaded by the players. This code also

creates the board, and uses namespaces to call methods from alternating student’s code.

As long as either player has not yet won the game, alternating players are asked for the

move they want to make. Each player has only five seconds to choose their move. If the

player exceeds five seconds when making a move, then the game is aborted, and there is

E. Heithoff 20

no winner. Once a move has been selected by the player, in order to actually insert the

bomb, the insertBomb method within CM.h (a file included into

gameController) is used. This ensures that the player’s will not attempt to insert a

bomb in an invalid location. As the game is being played, a game string is created.

Figure 7: Play Page

Once a winner has been determined, the C++ code connects to the database using

MySQL++. Once a connection is made, the player’s names, the outcome of the game,

and the game string are inserted into the database. Also, it is at this point where the rank

of the two players is changed. If the winner has a lower rank than the loser, then they

take over the loser’s rank and the loser’s rank is decreased by one. Also, all players

E. Heithoff 21

whose rank was lower than the loser and greater than the winner’s initial rank get their

rank decreased by one. This concludes the process of actually playing the game. See

Appendix H for the complete game controller.

If the gameController properly compiles and runs, then a message is

displayed to the user and they are able to follow a link back to the main page, where they

can watch the game they just played. A necessity for the gameController to work is

that the students upload code with the appropriate methods. Since gameController

uses a template to call the student’s code for the next move, all of the student’s must

follow a strict outline for their program. Certain methods must be included in the

student’s .h file and must produce the desired result. The primary and most important

method is makeMove(). The method makeMove() is called by the game controller

to get the next move from the player. makeMove() should return the row and column

where the next move should be made. In order for the student to determine this row and

column, they will need to write methods such as insertBomb() and evaluate()

which would give them valuable information in order to make the decision of where to

make the next move. While it is necessary for the student to write these methods for their

own use, the game controller is only concerned with the student having a method which

returns the move to be made. The Java applet and the game controller have their own

versions of insertBomb() and evaluate() which are guaranteed to be correct.

Visualizing Games Played

The fourth functionality of the web site is the ability to save and replay games that

are completed. This allows the users to see exactly where their code went wrong if they

lost their game, or what their code is doing right if they won the game. On the main

page, a table is displayed, listing all of the games that the user has played. This includes

games where they challenged a classmate, and also games they had been challenged to

play. If the user clicks on the appropriate game number, they are taken to a page that

displays a game board. The front-end page for this is GResult.php. GResult.php

E. Heithoff 22

connects to the database to lookup the game string associated with the game number on

which the user clicked. The game string is a list of moves in the form “row column.” An

example string is “0012001200.” This can be translated as player one plays in row 0,

column 0. Then player two makes a move in row 1, column 2. Player one now makes

another move in row 0, column 0, and so on. Once the last move of the games string is

played, the game is over. The game string is inserted into the database by the game

controller at the end of the game. If the game string is found, then a Java applet is called

and passed the game string as a parameter. The Java applet is what actually displays the

game board and plays the game (see Figure 8).

Figure 8: Java Applet

E. Heithoff 23

The Java applet uses a Graphical User Interface (GUI), to visually display a game.

The applet reads in the game string, extracts one move from the string at a time, and

displays the moves onto the screen. Each move is displayed on a timed interval, so that

the user can easily watch the game being played. Displaying the moves without a timer

would display the moves so fast that all that the user would actually see would be the

final board. The applet supports aspects similar to the student’s code, such as inserting a

bomb, and exploding the pieces. In order to make sure that the user is ready to view the

entire game, there is a button on the top of the game board. The game is not started until

the user clicks that “Start Game” button. Once the user is done viewing their game, there

is a link on the bottom of the page to take the user back to the main page.

E. Heithoff 24

SECTION 6: RESULTS AND USAGE

The application was first launched when the Critical Mass project was assigned to

the students of Computer Science III. The students were given a listing of the game

rules, an outline for the code they were to write, and some challenges. The challenges

centered on the online application. First, they were challenged to upload their code to the

website as soon as they could, which would give them a higher initial ranking than those

who uploaded their code after them. Next, the students were informed of goals that they

were to meet in order to get appropriate grades. If the student could get their code

uploaded to the web server and play any game, they were awarded 25 points. If the

student could do the previous and beat the code of randomMove, then they were awarded

35 points. In a similar manner, if the student beat the code of noLook, Heithoff, or

rlawrenc, they were awarded 45, 50, and 60 points respectively. The code for

randomMove simply used a random number generator to select a move. The code for

noLook used level two intelligence and no game tree. The code for Heithoff used a game

tree of depth five. rlawrenc also used a game tree of depth five, but had a better board

evaluator than Heithoff. Students also got bonus marks for building a game tree, and for

being ranked in the top ten.

During the implementation of this application, several problems were

encountered. First of all, some student’s code had infinite loops, and their code had to be

manually terminated. Also, if a student had segmentation faults in their code, then no

result would be displayed to the user and it was hard to track down this problem. See the

section Future Work for more information.

After being online for two weeks, the application hosted over 5,000 games. Some

students in the course played over 500 games. As measured by the student survey, the

application was a positive experience for those involved. All 42 students surveyed either

agreed or strongly agreed that the assignment was interesting. Further, almost 75%

strongly agreed that it was challenging as well. The Critical Mass assignment was the

E. Heithoff 25

best assignment in the class according to over 78% of the students, and furthermore, it

was the best assignment in any computer science course for 81% of the students. Eighty-

nine percent of the students felt that this assignment increased their interest in the course

material. This assignment helped to make 75% of the students better programmers. The

tournament feature of the assignment motivated more effort into doing the assignment

from 88% of the students, and 90% of the students felt the tournament feature made the

project more interesting than a stand-alone game with no student competitions. Eighty-

three percent of the students found the website user-friendly and over 40% of the students

logged on to the site more that 20 times.

Comments from the students included suggestions to do things which are

mentioned in the section, Future Work, such as “find a way to interrupt games that have

infinite loops,” “allow one to watch the progress of their current game while they are

playing,” and “have the ranking system based off of points, and not by whole won the last

game at that spot.” However, the majority of students only had positive things to say,

such as “If all assignments were like this, I would learn so much more, this kind of

programming project is the perfect combination of fun mixed with knowledge,” “This

was possibly the most interesting project I have ever worked with in my career at Iowa.

It has definitely sparked my interest to learn more about game intelligence programming

in the future,” “I really liked the challenge of this assignment and the opportunity to have

a chance to put my code up against others,” and “I’d just like to say that this is the most

innovative method used for an assignment so far in any computer science course that I’ve

taken. Placing students in direct competition in this way and having them build

something that they can truly have fun with makes this project a much better learning

experience that if we were told to simply make a game tree and turn it in. The motivation

behind seeing how well my code stands in contrast to others really forced me to work

harder than I otherwise would have on this project.” For a complete listing of the survey,

see appendix H.

E. Heithoff 26

SECTION 7: CONCLUSION

In order for a programmer to be successful, it is useful to fully understand the

architecture on which programs run. This project provided the opportunity to completely

create a program, from building the computer to installing the software that it runs on.

Most importantly, this project provided a teaching aide for Computer Science III and

C++, which may be used for years to come. It helped to teach students the effectiveness

and efficiency of their programming in an interesting way.

E. Heithoff 27

SECTION 8: FUTURE WORK

As with most projects, many other additions to the application were sought after.

There are several more features that could be added to this application to make it more

functional and more appealing. First of all, is would be useful for students to be able to

visualize the game as it is being played, computer versus computer, in real-time. A goal

that is somewhat in sync with the real-time computer versus computer feature is the

ability to play computer versus human in real-time. The Java applet could also be

improved to include a mp3 player-type slider which would allow students to “rewind” or

“fast-forward” through a game. Also, the GUI could be improved so that it is more

aesthetically pleasing. In order to make this application last, it would be necessary to

make it more versatile so that it could be used for other games as well. Lastly, in order to

make this application more “user-friendly,” it would be beneficial to improve the timer in

the game controller that regulates how long students have to select a move. Currently,

that task is done after the fact, creating a problem, especially if the student’s code goes

into an infinite loop.

Some challenges that were encountered when attempting these goals that are now

part of “future work” mostly centered on the ability to have the Java applet running and

communicating to the C++ program. Since the applet is started with HTML, and the C++

program is run by command line, this created a problem of how to get the move selected

from the C++ program to the web browser. The task of turning Critical Mass Online into

a web site for another game would be slightly less challenging. This would include

mostly changing the Java applet to be the correct board, using the correct C++ code for

the new game, and changing the logos. While researching to find a method to improve

the timer for the game controller, results were found that indicated that interrupts would

need to be used at the hardware level in order to accomplish this task. This would be a

tedious task and would require someone who is an expert with C++ interrupts.

E. Heithoff 28

REFERENCES

[1] Peter Wainwright. Professional Apache 2.0. Wrox Press Ltd, Birmingham,

UK, May 2002.

[2] Ben Laurie & Peter Laurie. Apache – The Definitive Guide. O’Reilly,

Sebastopol, CA, February 1999.

[3] Christopher Negus. Red Hat Linux Bible. IDG Books Worldwide, Foster

City, CA, January 1999.

[4] George Reese, Randy Jay Yarger, & Tim Kind. Managing & Using MySQL.

O’Reilly, Sebastopol, CA, April 2002.

[5] Hugh E. Williams & David Lane. Web Database Applications with PHP &

MySQL. O’Reilly, Sebastopol, CA, March 2002.

[6] Elizabeth Castro. HTML For the World Wide Web. Peachpit Press,

Berkeley, CA, 2000.

E. Heithoff 29

APPENDIX A: ACCUMULATING THE PARTS

• Motherboard: ASUS A7V333

• Monitor: STYLEPRO Series 17 FD Trinitron CRT

• Video Card: Verto GeForce4 MX 420 AGP 64MB DDR SDRAM

• Modem: Diamond SupraMax V.92 56K PCI W/ Voice Internal (OEM)

• Case Fan: MWAVE 80mm ball bearing fan for case w/ 4 pin connector

• Network Card: Netgear FA311TX 10BT/100BTX PCI RJ45

• Case: Audi XP

• CD-ROM drive: Sony 52X IDE

• Processor: AMD Athlon XP Processor

• Floppy drive: Mitusmi 1.44 Floppy

• Power Supply: Antec SL350 350W

• Hard drive: Maxtor 60.0 GB DX6L060 EIDE ULTRA-ATA 133 8.5NS

7200RPM 2MB Buffer

• RAM: Corsair CM64SD256-2700CX2H 32x64 333MHZ 256MB CAS2 DDR

DIMM W/ Heat Spreader

E. Heithoff 30

APPENDIX B: ASSEMBLING THE PARTS

1. Find the small metal stands for motherboard. The purpose of the stands is to

attach the motherboard to the case, while keeping the two from touching. It is

important to spread these out well, because they keep the motherboard from

bending when you are installing things to it. Put some stands around the edges as

well as in the middle of the motherboard.

2. Attach the motherboard onto the stands. Use non-magnetic tools and wear a static

guard wristband (plug into wall) when in contact with the motherboard, memory,

and processor. You should really always use it, but in those cases especially.

3. Put the memory into slot one of the memory slots. The memory should click in

easily if you rock it from side to side.

4. Put processor in by lifting out and up on the lever, then matching up pin 1 with

the correct corner. The processor should just fall right in; you should not have to

press down. Once it is in, you will have to push pretty hard to get the lever back

down.

5. To put the fan on top of the CPU, remove the sticky seal, then hook the one end

onto the clips (you may have to remove the memory in order to do this), and then

stretch it over to the clip on the other side. You might have to use a flathead

screwdriver to push down the other side. Be careful not to slip the screwdriver off

the clip and hit the motherboard.

6. Plug in the CPU fan and the power supply fan into the motherboard. These are

wires with white plugs on the end. They plug into the motherboard as labeled.

7. Put in the floppy drive by sliding it into the appropriate slot from within the case.

Make sure it matches up by looking at the front of the case.

8. Put in the hard drive by sliding it into the appropriate slot from within the case.

This should go into a slot that does not open from the front. Set it as the master.

E. Heithoff 31

9. Put in the CD-ROM from the front of the case. You will have to take off the front

first. It should slide in and pop into place. Set it as the master.

10. Put power supply in. Plug it into the motherboard and into all the drives. The big

fat collection of wires plugs into the motherboard and the smaller sets of wires

with several plugs on them plug into the drives. Plug the CD-ROM and the

floppy into the same set of cords and the hard drive and front fan (later) into the

same set of cords.

11. Plug IDE cables into drives and motherboard. The red wire should always be on

the same side as the power plugs in the drives. The least wide cable is for the

floppy drive. The cable with the most (smallest) wires is for the hard drive, and

the other one is for the CD-ROM. The floppy plugs in away from the hard drive

cable and the CD-ROM cable, which are right by each other.

12. Take the front cover off and screw in the front fan. Make sure that the airflow is

pointing into the case. Plug the fan into the power supply (previously stated).

13. Plug wires from the case into the Panel (lower right-hand corner of motherboard).

Color usually represents +5V and black or white usually represents ground.

14. Plug in USB port cables to motherboard. The USB 1.1 cables plug into the

motherboard where it says USB2_3, using the rules from above and the manual.

We could not find a place to plug in the USB 2.0 cables.

15. Put in the video card, modem, network card, and 2-port USB bracket. They go in

the slots near the back of the case, and they should be screwed on. You will have

to pop out the cut outs in the back of the case for the ports to show.

16. Plug the audio cable from the CD-ROM to the motherboard.

E. Heithoff 32

APPENDIX C: INSTALLING THE LINUX

OPERATING SYSTEM

1. Insert the 1st Linux disc

2. Restart your computer

3. The CD-ROM will automatically start up, prompting you to press enter at the

“Welcome to Red Hat Linux” screen.

4. Choose what language you want to install Linux in.

5. Choose what keyboard type you have.

6. Choose the Workstation configuration.

7. Allow Linux to partition the disk automatically.

8. Choose to install all software components.

9. Wait approximately 30 minutes for the software installation to complete. You

will probably have to insert disc 2 at this point.

10. Choose what mouse you have and if you are connected to a Local Area Network.

11. Have the software create a boot floppy disk.

12. Choose the appropriate video card and monitor.

13. Take out the installation disc and reboot the computer.

E. Heithoff 33

APPENDIX D: INSTALLING APACHE

1. Download source code for apache off of www.apache.org.

2. Put the source code in the directory /usr/local/

3. cd /usr/local

4. gunzip httpd-2.0.39.tar.gz

5. tar xvf httpd-2.0.39.tar

6. cd httpd-2.0.39

7. ./configure –prefix=/www –enable-module=so

8. make

9. make install

10. /www/bin/apachectl start

11. Go to http://localhost/ to view the sample Apache page to make sure you installed

correctly.

http://www.apache.org/
http://localhost/

E. Heithoff 34

APPENDIX E: INSTALLING MYSQL

1. Download the following RPM files for MySQL into /tmp

a. MySQL-3.23.52-1.i386.rpm

b. MySQL-client-3.23.52-1.i386.rpm

c. MySQL-devel-3.23.52-1.i386.rpm

d. MySQL-shared-3.23.52-1.i386.rpm

e. MySQL-bench-3.23.52-1.i386.rpm (needs Perl, I couldn’t install)

2. Use these commands to install these

a. rpm –i /tmp/MySQL-3.23.52-1.i386.rpm

b. rpm –i /tmp/MySQL-client-3.23.52-1.i386.rpm

c. rpm –i /tmp/MySQL-devel-3.23.52-1.i386.rpm

d. rpm –i /tmp/MySQL-shared-3.23.52-1.i386.rpm

e. rpm –i /tmp/MySQL-bench-3.23.52-1.i386.rpm

3. In order to connect to the database directly enter the command

a. mysql –u root –p

b. Enter password: (password starts out as blank if you don’t change it)

4. Once you are in the mysql prompt, you can begin to create your database

CREATE DATABASE CriticalMass;

USE CriticalMass;

CREATE TABLE Student (

USER_ID CHAR(10) NOT NULL PRIMARY KEY,

PSWD CHAR(10),

F_NAME CHAR(25),

L_NAME CHAR(40),

WINS INT,

LOSSES INT,

E. Heithoff 35

TIES INT,

RANK INT,

TOTAL_GAMES INT,

FILE_NAME CHAR(30)

PLAYING CHAR(10)

LAST_CHAL DATETIME);

CREATE TABLE GamesPlayed(

PLYR_1 CHAR(10),

PLYR_2 CHAR(10),

G_RESULT CHAR(2),

GAME_STRING TEXT,

G_NBR INT NOT NULL PRIMARY KEY

AUTO_INCREMENT);

E. Heithoff 36

APPENDIX F: INSTALLING PHP

1. Download the source code from www.php.net and put into /usr/local/

2. cd /usr/local/

3. gunzip php-4.2.3.tar.gz

4. tar xvf php-4.2.3.tar

5. cd php-4.2.3

6. ./configure –with-mysql –with-apxs2=/www/bin/apxs

7. make

8. make install

Problems encountered while installing php

1. In order to get php version 4.2.3 to work with Apache 2.0.39 you must do the

following:

a. In php_functions.c, comment out the following bit of code

 i. /* #if !MODULE_MAGIC_AT_LEAST(20020506,0)

ADD_STRING(boundary);

#endif */

b. Also in php_functions.c, you need to check under the method

php_register_hook for:

 i. ap_register_output_filter(“PHP”, php_output_filter, NULL,

AP_FTYPE_RESOURCE);

1. Remove the entire 3rd argument; Remove NULL from the

parameters.

2. If NULL is not removed, this will generate an error when using

“MAKE” & “MAKE INSTALL”

http://www.php.net/

E. Heithoff 37

 ii. ap_register_input_filter(“PHP”, php_input_filter, NULL,

AP_FTYPE_RESOURCE);

1. Remove the entire 3rd argument; Remove NULL from the

parameters.

2. If NULL is not removed, this will generate an error when using

“MAKE” & “MAKE INSTALL”

c. In httpd.conf,

 i. Instead of “AddType application/x-httpd-php .php”

 ii. Put <Files *.php>

 SetOutputFilter PHP

 SetInputFilter PHP

</Files>

E. Heithoff 38

APPENDIX G: INSTALLING MYSQL++

1. Download and install zlib (www.gzip.org/zlib/)

2. Download and install MySQL++ v.1.7.9 source distribution

a. ./configure

b. make

c. make install

3. Libraries go to /usr/local/lib when installed

4. Compile line for a C++ program using MySQL++:

a. g++ -Wall test.cxx –o test –I /usr/include/mysql –L /usr/local/lib –lsqlplus

5. In C++ program:

a. #include <sqlplus.hh>

6. Problem: When running test.cxx, and error was occurring that stated that it could not

find file.

7. Solution: Edit /etc/ld.so.conf by adding the line “/usr/local/lib” and run the program

ldconfig.

http://www.gzip.org/zlib/

E. Heithoff 39

APPENDIX H:

GAMECONTROLLERTEMPLATE.CXX

#include "../student/PLAYER1.h"
#include "../student/PLAYER2.h"
#include "CM.h"
#include <iostream>
#include <cstdlib>
#include <sstream>
#include <string>
#include <stdio.h>
#include <sqlplus.hh>
#include <custom.hh>
#include <time.h>

using namespace PLAYER2;
using namespace PLAYER1;
using namespace std;

// Forward declarations
bool insertBomb(CMboard &bd, int p, int r, int c);
void fixOverflow(CMboard &bd, int p, int r, int c);

std::string convertToString(int x)
{
 std::ostringstream o;
 if (o << x)
 return o.str();
 // some sort of error handling goes here...
 return "conversion error";
}

// Ultimate authority code for inserting bomb in game board
bool insertBomb(CMboard &bd, int p, int r, int c)
{

 if (r < 0 || r >= bd.getMaxRow() || c < 0 || c >=
bd.getMaxCol())

 return false;

 if(p != bd.getPlayer(r,c) && bd.getPlayer(r,c) != 0)
 return false;

 int pieces = bd.getNumPieces(r,c);
 bd.setNumPieces(r,c,pieces+1);
 bd.setPlayer(r,c,p);
 if (pieces+1 >= bd.getMaxPieces(r,c))
 fixOverflow(bd, p,r,c);

 return true;
}

void fixOverflow(CMboard &bd, int p, int r, int c)
{
 queue<CMsquare*> q;
 q.push(bd.getSquare(r, c));

E. Heithoff 40

 while(!q.empty())
 {
 if (bd.getStatus() != 0)
 break; // Chain of explosions killed other plyr
 // Prevent possible infinite loop

 if(q.front()->bombs >= q.front()->max_bombs)
//must explode the square

 {
 q.front()->bombs = 0;
 q.front()->player = 0;
 //find where the exploded bombs move to..
 if (q.front()->row < bd.getMaxRow()-1)

//at row before last row
 {
 q.push(bd.getSquare(q.front()->row+1,

q.front()->col));
 ++q.back()->bombs;
 q.back()->player = p;
 }
 if (q.front()->col < bd.getMaxCol()-1)
 {
 q.push(bd.getSquare(q.front()->row,

q.front()->col+1));
 ++q.back()->bombs;
 q.back()->player = p;
 }
 if (q.front()->row > 0)
 {
 q.push(bd.getSquare(q.front()->row-1,

q.front()->col));
 ++q.back()->bombs;
 q.back()->player = p;
 }
 if (q.front()->col > 0)
 {
 q.push(bd.getSquare(q.front()->row,

q.front()->col-1));
 ++q.back()->bombs;
 q.back()->player = p;
 }
 }
 q.pop();
 }
}

int main()
{

int timeAllowance = 5000000;
//number of milliseconds allowed per move = 5 seconds
int verybeg, veryend, startclock, endclock;
string win;
string gameString = "";
PLAYER2::CMGame p2;
PLAYER1::CMGame p1;
int row, col;
int winner = 0;

E. Heithoff 41

int moves = 0;
verybeg = clock();
CMboard b(5,6), temp;

while (b.getStatus() ==0)
{ startclock = clock(); //Start sys clock

row = -1; col = -1;
temp = b;
p1.makeMove(temp,1, row, col);

endclock = clock(); //End sys clock
if(endclock-startclock > timeAllowance)
{ cout<< "PLAYER1 is taking too long to make moves!"<<

endl;
cout << (endclock-startclock)/1000000 << " seconds"

<< endl;
winner = 2;
break;

}
if(insertBomb(b,1, row, col))
{

moves++;
std::string Srow = convertToString(row);
std::string SCol = convertToString(col);
gameString = gameString + Srow + SCol;

}
else
{ winner = 2;

cout << "Tried to insert invalidly player 1" << endl;
cout << "Game string: " << gameString << endl;
cout << "Invalid move attempted - row: " << row << "

col: " << col << endl;
break;

}

if(b.getStatus()==0)
{ startclock = clock(); //Start sys clock

row = -1; col = -1;
temp = b;
p2.makeMove(temp,2,row,col);
endclock = clock(); //End sys clock
if(endclock-startclock > timeAllowance)
{ cout<< "PLAYER2 is taking too long to make

moves!"<< endl;
cout << (endclock-startclock)/1000000 << "

seconds" << endl;
winner = 1;
break;

}

if(insertBomb(b,2, row, col))
{

moves++;
std::string Srow = convertToString(row);
std::string SCol = convertToString(col);
gameString = gameString + Srow + SCol;

}
else

E. Heithoff 42

{ winner = 1;
cout << "Tried to insert invalidly player 2" <<

endl;
 cout << "Game string: " << gameString << endl;
 cout << "Invalid move attempted - row: " << row

<< " col: " << col << endl;
break;

}
}

}
if (winner == 0)

winner = b.getStatus();
if(winner ==2)
{ cout << "The winner is PLAYER2. " << endl;

win = "p2";
}
else if(winner ==1)
{ cout << "The winner is PLAYER1." << endl;

win = "p1";
}

int onewins, onelosses, onerank, onegames;
int twogames, twowins, twolosses, tworank;
int maxrank;

Connection con("CriticalMass","localhost","root","");
//Insert game data into database
Query query = con.query();
query << "INSERT INTO GamesPlayed (PLYR_1, PLYR_2, G_RESULT,

GAME_STRING) VALUES ('PLAYER1','PLAYER2' "<< "," <<"'" <<
win <<"'"<< "," <<"'"<< gameString << "'"<<")";

query.execute();

//find the maximum rank
Query query0 = con.query();
query0 << "Select MAX(RANK) from Student";
Result res = query0.store();
Row rowInfo0;
Result::iterator k;

 for (k = res.begin(); k != res.end(); k++)
 {

rowInfo0 = *k;
maxrank = rowInfo0["MAX(RANK)"];

}

//Obtain player one's information
Query query2 = con.query();
query2 << "Select WINS, LOSSES, RANK, TOTAL_GAMES FROM Student

WHERE USER_ID = 'PLAYER1'";
res = query2.store();
Row rowInfo;
Result::iterator i;

 for (i = res.begin(); i != res.end(); i++)
 { rowInfo = *i;

onewins = rowInfo["WINS"];
onelosses = rowInfo["LOSSES"];

E. Heithoff 43

onerank = rowInfo["RANK"];
onegames = rowInfo["TOTAL_GAMES"];

}
//Obtain player two's information
query << "Select WINS, LOSSES, RANK, TOTAL_GAMES FROM Student

WHERE USER_ID = 'PLAYER2'";
res = query.store();
Row rowInfo2;
Result::iterator j;

 for (j = res.begin(); j != res.end(); j++)
 { rowInfo2 = *j;

twowins = rowInfo2["WINS"];
twolosses = rowInfo2["LOSSES"];
tworank = rowInfo2["RANK"];
twogames = rowInfo2["TOTAL_GAMES"];

}

// Player 1 is the challenger
// Player 2 is the program the was challenged

// P1 challenged a lower ranked player P2 and won - do not update
any rankings

if(winner == 1 && onerank < tworank)
{

query << "Update Student Set WINS = (" << onewins +1 << ")
, TOTAL_GAMES = (" << onegames +1 << ") WHERE USER_ID
= 'PLAYER1'";

query.execute();

query << "Update Student Set LOSSES = (" << twolosses +1 <<
"), TOTAL_GAMES = (" << twogames +1 << ") WHERE
USER_ID = 'PLAYER2'";

query.execute();

}

// P1 challenged a higher ranked player p2 and won - update
rankings

else if(winner == 1 && onerank >= tworank)
{

query << "Update Student Set WINS = (" << onewins +1 << ")
, TOTAL_GAMES = (" << onegames +1 << "), RANK = (" <<
tworank << ") WHERE USER_ID = 'PLAYER1'";

query.execute();

//update all ranks greater than that of the loser and less
than winner

query << "UPDATE Student SET RANK = (RANK + 1) WHERE RANK
>= " << tworank + 1 << " AND RANK <= " << onerank <<
endl;

query.execute();

query << "Update Student Set LOSSES = (" << twolosses +1 <<
"), TOTAL_GAMES = (" << twogames +1 << "), RANK = ("
<< tworank + 1 << ") WHERE USER_ID = 'PLAYER2'";

 query.execute();
}

E. Heithoff 44

// P1 challenged a higher ranked player and lost - no update to
rankings

else if(winner == 2 && onerank >= tworank)
{

query << "Update Student Set WINS = (" << twowins +1 << "),
TOTAL_GAMES = (" << twogames +1 << ") WHERE USER_ID =
'PLAYER2'";

query.execute();
query << "Update Student Set LOSSES = (" << onelosses +1 <<

"), TOTAL_GAMES = (" << onegames +1 << ") WHERE
USER_ID = 'PLAYER1'";

query.execute();

}

// P1 challenged a lower ranked player and lost - update rankings
by switching places between two

else if(winner == 2 && onerank < tworank)
{

query << "Update Student Set WINS = (" << twowins +1 << "),
TOTAL_GAMES = (" << twogames +1 << "), RANK = (" <<
onerank << ") WHERE USER_ID = 'PLAYER2'";

 query.execute();
 query << "Update Student Set LOSSES = (" << onelosses +1 <<

"), TOTAL_GAMES = (" << onegames +1 << "), RANK = ("
<< tworank << ") WHERE USER_ID = 'PLAYER1'";

 query.execute();
}
veryend = clock();
//cout << "Total time: " << veryend-verybeg << endl;

return EXIT_SUCCESS;
}

E. Heithoff 45

APPENDIX I: STUDENT SURVEY

1. The Critical Mass assignment was an interesting assignment.

a. Strongly Agree

b. Agree

c. Neutral

d. Disagree

e. Strongly Disagree

2. The Critical Mass assignment was a challenging assignment.

a. Strongly Agree

b. Agree

c. Neutral

d. Disagree

e. Strongly Disagree

3. The Critical Mass assignment was the best assignment in this class.

a. Strongly Agree

b. Agree

c. Neutral

d. Disagree

e. Strongly Disagree

4. The Critical Mass assignment was one of the best assignments so far in any computer

science course.

a. Strongly Agree

b. Agree

c. Neutral

d. Disagree

e. Strongly Disagree

5. The Critical Mass assignment increased my interest in the course material.

E. Heithoff 46

a. Strongly Agree

b. Agree

c. Neutral

d. Disagree

e. Strongly Disagree

6. Game trees and game-related projects make the data structures course more

interesting.

a. Strongly Agree

b. Agree

c. Neutral

d. Disagree

e. Strongly Disagree

7. The tournament feature of this assignment motivated more effort into doing the

assignment.

a. Strongly Agree

b. Agree

c. Neutral

d. Disagree

e. Strongly Disagree

8. The tournament feature of the assignment is more interesting than developing a stand-

alone game with no student competitions.

a. Strongly Agree

b. Agree

c. Neutral

d. Disagree

e. Strongly Disagree

9. The design of the game website is user-friendly.

E. Heithoff 47

a. Strongly Agree

b. Agree

c. Neutral

d. Disagree

e. Strongly Disagree

10. Approximately how many times did you log into the game site?

a. 1-5

b. 6-10

c. 11-15

d. 16-20

e. 20 or more

11. Approximately where did you rank against your classmates?

a. 1-10

b. 11-20

c. 21-30

d. 31-40

e. 4 or above

12. What is your expected grade in this course?

a. A

b. B

c. C

d. D

e. F

13. Please enter any general comments about the assignment and the Critical Mass

website here.

	ABSTRACT
	TABLE OF CONTENTS
	SECTION 1: INTRODUCTION
	SECTION 2: MOTIVATION
	SECTION 3: PROJECT SUMMARY
	Contributions

	SECTION 4: BACKGROUND
	Development Process and Goals
	Open Source Software and Languages
	Architecture Overview
	Critical Mass Rules and Examples
	Platform Configuration

	SECTION 5: SYSTEM DESCRIPTION
	Database Design
	HTML Design
	Authentication
	Student Code Upload
	Playing Games
	Visualizing Games Played

	SECTION 6: RESULTS AND USAGE
	SECTION 7: CONCLUSION
	SECTION 8: FUTURE WORK
	REFERENCES
	APPENDIX A: ACCUMULATING THE PARTS
	APPENDIX B: ASSEMBLING THE PARTS
	APPENDIX C: INSTALLING THE LINUX OPERATING SYSTEM
	APPENDIX D: INSTALLING APACHE
	APPENDIX E: INSTALLING MYSQL
	APPENDIX F: INSTALLING PHP
	Problems encountered while installing php

	APPENDIX G: INSTALLING MYSQL++
	APPENDIX H: GAMECONTROLLERTEMPLATE.CXX
	APPENDIX I: STUDENT SURVEY

