COSC 122 Computer Fluency

Databases

Dr: Ramon Lawrence
 University of British Columbia Okanagan ramon.lawrence@ubc.aa

Key Points

1) Databases allow for easy storage and retrieval of large amounts of information.
2) Relational databases organize data into tables consisting of rows and columns.
3) SQL is the common language to query a database for results.

What is a database?

A database is a collection of logically related data for a particular domain.

A database management system (DBMS) is software designed for the creation and management of databases.
e.g. Oracle, DB2, Microsoft Access, MySQL, SQL Server

Bottom line: A database is the data stored and a database system is the software that manages the data.

Databases in the Real-World

Databases are everywhere in the real-world even though you do not often interact with them directly.
-\$20 billion dollar annual industry
Examples:

- Retailers manage their products and sales using a database.
\Rightarrow Wal-Mart has one of the largest databases in the world!
-Online web sites such as Amazon, eBay, and Expedia track orders, shipments, and customers using databases.
-The university maintains all your registration information and marks in a database that is accessible over the Internet.

Can you think of other examples?
What data do you have?

DBMS

A database management system provides efficient, convenient, and safe multi-user storage and access to massive amounts of persistent data.

Efficient - Able to handle large data sets and complex queries without searching all files and data items.
Convenient - Easy to write queries to retrieve data. Safe - Protects data from system failures and hackers.
Massive - Database sizes in gigabytes and terabytes.
Persistent - Data exists even if have a power failure.
Multi-user - More than one user can access and update data at the same time while preserving consistency.

Database System Approach

Page 6

Advanced: Databases and Abstraction

One of the major advantages of databases is they provide data abstraction. Data abstraction allows the implementation of an object to change without affecting programs that use the object through an external definition.

That is, as a database user or programmer, you do not have to worry about how the data is stored or organized.

A DBMS achieves data abstraction by allowing users to define the database and then handling all the low-level details of how to store it, retrieve it, and handle concurrent access to it.

The Relational Model: Terminology

The relational model organizes database information into tables called relations.
-The relational model was developed by E. F. Codd in 1970 and is used by almost all commercial database systems.

Terminology:
A relation is a table with columns and rows.
An attribute is a named column of a relation.
A tuple is a row of a relation.
A domain is a set of allowable values for one or more attributes. The degree of a relation is the number of attributes it contains. The cardinality of a relation is the number of tuples it contains.

Relation Example

relation

attributes

毌 Products: Table

Relation Practice Questions

							-			
	Order ID	Customer	Employee	Order Date	Shipped Date	Ship Via	Ship Name	Ship Address	Ship Postal Code	\triangle
\downarrow	10248	VINET	5	04-Aug-94	16-Aug-94	3	Vins et alcools Chevalier	59 rue de l'Abbaye	51100	
	10249	TOMSP	6	05-Aug-94	10-Aug-94	1	Toms Spezialitäten	Luisenstr. 48	44087	
	10250	HANAR	4	08-Aug-94	12-Aug-94	2	Hanari Carnes	Rua do Paço, 67	05454-876	
	10251	VICTE	3	08-Aug-94	15-Aug-94	1	Victuailles en stock	2, rue du Commerce	69004	
	10252	SUPRD	4	09-Aug-94	11-Aug-94	2	Suprêmes délices	Boulevard Tirou, 255	B-6000	
	10253	HANAR	3	10-Aug-94	16-Aug-94	2	Hanari Carnes	Rua do Paço, 67	05454-876	
	10254	CHOPS	5	11-Aug-94	23-Aug-94	2	Chop-suey Chinese	Hauptstr. 31	3012	
	10255	RICSU	9	12-Aug-94	15-Aug-94	3	Richter Supermarkt	Starenweg 5	1204	
	10256	WELLI	3	15-Aug-94	17-Aug-94	2	Wellington Importadora	Rua do Mercado, 12	08737-363	
	10257	HILAA	4	16-Aug-94	22-Aug-94	3	HILARIÓN-Abastos	Carrera 22 con Ave. Carlos	5022	
	10258	ERNSH	1	17-Aug-94	23-Aug-94	1	Ernst Handel	Kirchgasse 6	8010	
	10259	CENTC	4	18-Aug-94	25-Aug-94	3	Centro comercial Moctezuma	Sierras de Granada 9993	05022	
	10260	OTTIK	4	19-Aug-94	29-Aug-94	1	Ottilies Käseladen	Mehrheimerstr. 369	50739	
	ord: 14	-	- \| \mid \| ${ }^{\text {米 }}$	of 827						$1 /$

1) What is the name of the relation?
2) What is the cardinality of the relation?
3) What is the degree of the relation?
4) What is the domain of order date? What is the domain of order id?

Page 10

Databases
 Database and Database System

Question: Which of these two definitions below are an example of software?
A) database
B) database system

Databases Database Properties

Question: True or False: The data in a database is lost when the power to the computer is turned off.
A) true
B) false

Databases Database Properties (2)

Question: True or False: More than one user can use the database managed by the DBMS at the same time.
A) true
B) false

Databases
 Definition Matching

Question: Given the three definitions, select the ordering that contains their related definitions.

1) relation
2) tuple
3) attribute
A) column, row, table
B) row, column, table
C) table, row, column
D) table, column, row

Databases Cardinality and Degree

Question: A database table has 10 rows and 5 columns. Select one true statement.
A) The table's degree is 50 .
B) The table's cardinality is 5 .
C) The table's degree is 10 .
D) The table's cardinality is 10 .

Relational Keys

Keys are used to uniquely identify a tuple in a relation.

A superkey is a set of attributes that uniquely identifies a tuple in a relation.

A key is a minimal set of attributes that uniquely identifies a tuple in a relation.

Question:
What is a key to identify a student in this class?

Databases
 Keys and Superkeys

Question: True or false: A key is always a superkey.
A) true
B) false

Databases Keys and Superkeys (2)

Question: True or false: It is possible to have more than one key for a table and the keys may have different numbers of attributes.
A) true
B) false

Example Relations

Relations:
emp (eno, ename, bdate, title, salary, supereno, dno)
proj (pno, pname, budget, dno)
dept (dno, dname, mgreno)
workson (eno, pno, resp, hours)
Emp - one row per employee storing name, birth date, supervisor, and department that they are in
Proj - one row per project storing name and its department
Dept - one row per department storing name and manager
Workson - stores that an employee works on a particular project for a certain amount of time in a given role Note: Key fields are underlined.

Example Relation Instances

Emp Relation

eno	ename	bdate	title	salary	supereno	d no
E 1	J. Doe	01-05-75	E E	30000	E 2	null
E 2	M. Smith	06-04-66	S A	50000	E 5	D 3
E 3	A. Lee	07-05-66	M E	40000	E 7	D 2
E 4	J. M iller	09-01-50	PR	20000	E 6	D 3
E 5	B. Casey	12-25-71	S A	50000	E 8	D 3
E 6	L. Chu	11-30-65	E E	30000	E 7	D 2
E 7	R. D avis	09-08-77	M E	40000	E 8	D 1
E 8	J. Jones	10-11-72	S A	50000	null	D 1

WorksOn Relation

eno	pno	resp	hours
E 1	P1	Manager	12
E 2	P1	Analyst	24
E 2	P2	Analyst	6
E 3	P3	Consultant	10
E 3	P4	Engineer	48
E 4	P2	Programmer	18
E 5	P2	Manager	24
E 6	P4	Manager	48
E 7	P3	Engineer	36

Proj Relation

pno	pname	budget	dno
P1	Instruments	150000	D 1
P2	DB Develop	135000	D 2
P3	Budget	250000	D 3
P4	Maintenance	310000	D 2
P5	CAD/CAM	500000	D 2

Dept Relation

dno	dname	mgreno
D 1	Management	E 8
D 2	Consulting	E 7
D 3	Accounting	E 5
D 4	Development	null

A Simple Query Language: Keyword Searching

Keyword (or English-language) search allows a user to type keywords or phrases and returns a best answer estimate.

This works fairly well for web searches, although we lack precision. Precision is required for many applications.
-Example: How would you return all employees with salary greater than 30,000 using keyword search?

SQL Overview

Structured Query Language or SQL is the standard database query language to retrieve exact answers.

SQL is a declarative language (non-procedural). A SQL query specifies what to retrieve but not how to retrieve it.
-SQL is used by Microsoft Access.

Some basic rules for SQL statements:

1) There is a set of reserved words that cannot be used as names for database fields and tables.
\Rightarrow SELECT, FROM, WHERE, etc.
2) SQL is generally case-insensitive.
\Rightarrow Only exception is string constants. 'FRED' not the same as 'fred'.
-3) SQL is free-format and white-space is ignored.

SQL Queries

A query in SQL has the form:

SELECT (list of attributes)
 FROM (list of tables)
 WHERE (filter conditions)

Notes:

1) Separate the list of attributes and list of tables by commas.
2) The " \star " is used to select all attributes.

SQL

Retrieving Only Some of the Columns

The projection operation creates a new table that has some of the columns of the input table. In SQL, provide the table in the FROM clause and the fields in the output in the SELECT.

Example: Return only the eno field from the Emp table:

$$
\begin{array}{ll}
\text { SELECT eno } \\
\text { FROM } & \text { emp }
\end{array}
$$

Emp Relation

eno	ename	bdate	title	salary	supereno	d no
E 1	J. Doe	01-05-75	E E	30000	E 2	null
E2	M . S mith	06-04-66	S A	50000	E 5	D 3
E 3	A. Lee	07-05-66	M E	40000	E 7	D 2
E 4	J. M iller	09-01-50	PR	20000	E 6	D 3
E 5	B. Casey	12-25-71	S A	50000	E 8	D 3
E 6	L. Chu	11-30-65	E E	30000	E 7	D 2
E 7	R. D avis	09-08-77	M E	40000	E 8	D 1
E 8	J. Jones	10-11-72	S A	50000	null	D 1

SQL Projection Examples

Emp Relation				SETE FROM	eno, ename emp	$\begin{aligned} & \text { SELECT } \\ & \text { FROM } \end{aligned}$
eno	ename	title	salary	eno	ename	title
E1	J. Doe	E E	30000	E 1	J. Doe	EE
E 2	M. Smith	S A	50000	E2	M. Smith	SA
E 3	A. Lee	M E	40000	E 3	A. Lee	ME
E 4	J. M iller	P R	20000	E 4	J. M iller	PR
E 5	B. Casey	S A	50000	E 5	B. Casey	SA
E 6	L. Chu	E E	30000	E 6	L. Chu	EE
E 7	R. Davis	M E	40000	E 7	R. D avis	ME
E 8	J. Jones	S A	50000	E 8	J. Jones	SA

Note: Duplicates are not removed during SQL projection.

Databases Projection

Question: Given this table and the query:

```
SELECT eno, ename, salary
FROM emp
```

How many columns are returned?
A) 0
B) 1
C) 2
D) 3
E) 4

Emp Relation

eno	ename	title	salary
E 1	J. Doe	E E	30000
E 2	M. Smith	S A	50000
E 3	A. Lee	M E	40000
E 4	J. M iller	PR	20000
E 5	B. Casey	S A	50000
E 6	L. Chu	E E	30000
E 7	R. Davis	M E	40000
E 8	J. Jones	S A	50000

Databases

 Projection (2)
Question: Given this table and the query:

SELECT	salary
FROM	emp

How many rows are returned?

Emp Relation

eno	ename	title	salary
E 1	J. Doe	E E	30000
E 2	M. Smith	S A	50000
E 3	A. Lee	M E	40000
E 4	J. Miller	PR	20000
E 5	B. Casey	S A	50000
E 6	L. Chu	E E	30000
E 7	R. D avis	M E	40000
E 8	J. Jones	S A	50000

SQL Projection Questions

WorksOn Relation

eno	pno	resp	dur
E 1	P1	M anager	12
E2	P1	A nalyst	24
E2	P2	A nalyst	6
E3	P3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E5	P2	M anager	24
E6	P4	M anager	48
E7	P3	Engineer	36
E7	P5	Engineer	23
E 8	P3	Manager	40

Write the SQL statement that:

1) Returns only attributes resp and dur.
2) Returns only eno.
3) Returns only pno.

List the number of result rows and columns in each case.

One Table Query Example Retrieving Only Some of the Rows

The selection operation creates a new table with some of the rows of the input table. A condition specifies which rows are in the new table. The condition is similar to an if statement.
Example: Return the projects in department ' D2':

```
SELECT pno, pname, budget, dno
FROM proj
WHERE dno = 'D2';
```

Proj Relation

pno	pname	budget	dno
P1	Instruments	150000	D 1
P2	DB Develop	135000	D2
P3	B udget	250000	D 3
P4	Maintenance	310000	D2
P5	CAD/CAM	500000	D 2

Result

pno	pname	budget	dno
P2	DB Develop	135000	D2
P4	Maintenance	310000	D2
P5	CAD/CAM	500000	D2

Retrieving Only Some of the Rows Selection Conditions

The condition in a selection statement specifies which rows are included. It has the general form of an if statement.

The condition may consist of attributes, constants, comparison operators (<, >, =, !=, <=, >=), and logical operators (AND, OR, NOT).

SQL Selection Examples

Emp Relation

eno	ename	title	salary
E 1	J. Doe	EE	30000
E 2	M. Smith	S A	50000
E 3	A. Lee	M E	40000
E 4	J. Miller	PR	20000
E 5	B. Casey	S A	50000
E6	L. Chu	EE	30000
E 7	R. Davis	ME	40000
E 8	J. Jones	SA	50000

SFIFCT eno, ename, title, salary FROM emp
WHERE salary > 35000 OR title $=$ ' PR '

eno	ename	title	salary
E 2 M. Smith S A 50000 E 3 A. Lee M E E 40000 E 5 J. Miller PR E 7 B. Casey S A E 80000 R. Davis M E J. Jones $_{40000}$	S A	50000	

SELECT *

```
FROM emp
WHERE title = 'EE'
```

eno	ename	title	salary
E 1 J.Doe EE E6 60000 $\|$ L. Chu	EE	30000	

Databases Selection

Question: Given this table and the query:

```
SELECT *
FROM emp
WHERE title='EE'
```

How many rows are returned?
A) 0
B) 1
C) 2
D) 3

Emp Relation

eno	ename	title	salary
E 1	J. Doe	E E	30000
E 2	M. Smith	S A	50000
E 3	A. Lee	M E	40000
E 4	J. M iller	PR	20000
E 5	B. Casey	S A	50000
E 6	L. Chu	EE	30000
E 7	R. D avis	M E	40000
E 8	J. Jones	S A	50000

Databases Selection

Question: Given this table and the query:

```
SELECT *
FROM emp
WHERE salary > 50000 or title='PR'
```

Emp Relation
How many rows are returned?
A) 0
B) 1
C) 2
D) 3

eno	ename	title	salary
E 1 J. Doe EE E 20000 E 3 M. Smith SA E 4 A. Lee ME E 5 J. Miller PR E 60000 E 7 B. Casey SA E 8 R. Chu EE	J. Jones	300000	

Databases Selection

Question: Given this table and the query:

```
SELECT *
FROM emp
WHERE salary > 50000 or title='PR'
```

Emp Relation
How many columns are returned?
A) 0
B) 2
C) 3
D) 4

eno	ename	title	salary
E 1 J. Doe EE E 20000 E 3 M. Smith SA E 4 A. Lee ME E 5 J. Miller PR E 60000 E 7 B. Casey SA E 8 R. Chu EE J. Jones 300000	SA	50000	

SQL Selection Questions

WorksOn Relation

eno	p no	resp	dur
E 1	P 1	Manager	12
E 2	P 1	Analyst	24
E 2	P2	Analyst	6
E 3	P 3	Consultant	10
E 3	P 4	Engineer	48
E 4	P2	Programmer	18
E 5	P2	Manager	24
E 6	P 4	Manager	48
E7	P3	Engineer	36
E 7	P 5	Engineer	23
E 8	P 3	Manager	40

Write the SQL statement that:

1) Returns all rows with a project $P 2$.
2) Returns all rows with responsibility of a Manager.
3) Returns all rows with a responsibility of Manager and duration of more than 40 months.

List the number of result rows for each case.

One Table Query Example Retrieving Some of the Rows/Columns

Return the employee name and salary of all employees whose title is 'EE':
SELECT ename, salary
FROM emp
WHERE title = 'EE';

Emp Relation

eno	ename	bdate	title	salary	supereno	dno
E 1	J. Doe	01-05-75	E E	30000	E 2	null
E 2	M. Smith	06-04-66	S A	50000	E 5	D 3
E 3	A. Lee	07-05-66	M E	40000	E 7	D 2
E 4	J. M iller	09-01-50	PR	20000	E 6	D 3
E 5	B. Casey	12-25-71	S A	50000	E 8	D 3
E 6	L. Chu	11-30-65	E E	30000	E 7	D 2
E 7	R. Davis	09-08-77	M E	40000	E 8	D 1
E 8	J. Jones	10-11-72	S A	50000	null	D 1

Result

ename	salary
J. Doe	30000
L. Chu	30000

One Table Query Examples

Return the birth date and salary of employee 'J. Doe':

```
SELECT bdate, salary
FROM emp
WHERE ename = 'J. Doe'
```

Return all information on all employees:

```
SELECT * \longleftarrow * returns all attributes
FROM emp
```

Return the employee number, project number, and number of hours worked where the hours worked is >50:

```
SELECT eno, pno, hours
FROM workson
WHERE hours > 50
```


Databases

Projection and Selection

Question: Given this table and the query:

```
SELECT eno, salary
FROM emp
WHERE salary >= 40000
```

Emp Relation
What is the degree of the result?
A) 2
B) 3
C) 4
D) 5

eno	ename	title	salary
E 1 J. Doe	EE	30000	
E 2	M. Smith	SA	50000
E 3	A. Lee	ME	40000
E 4	J. Miller	PR	20000
E 5	B. Casey	SA	50000
E 6	L. Chu	EE	30000
E 7	R. Davis	M E	40000
E 8	J. Jones	S A	50000

Databases

Projection and Selection (2)

Question: Given this table and the query:

$$
\begin{aligned}
& \text { SELECT eno, salary } \\
& \text { FROM } \\
& \text { EmpRE } \\
& \text { Nalary >= } 40000
\end{aligned}
$$

Emp Relation
What is the cardinality of the result?
A) 2
B) 3
C) 4
D) 5

eno	ename	title	salary
E 1	J. Doe	EE	30000
E 2	M. Smith	SA	50000
E 3	A. Lee	M E	40000
E 4	J. Miller	PR	20000
E 5	B. Casey	SA	50000
E 6	L. Chu	EE	30000
E 7	R. Davis	ME	40000
E 8	J. Jones	SA	50000

SQL Projection/Selection One Table Questions

Relations:
emp (eno, ename, bdate, title, salary, supereno, dno)
proj (pno, pname, budget, dno)
dept (dno, dname, mgreno)
workson (eno, pno, resp, hours)

1) Returns all employees making more than $\$ 50,000$.
2) Show the WorksOn records with less than 20 hours but more than 10 hours.
3) Return only the pno and dno for each project.
4) Return the name for each employee in department ' D1 '.
5) Challenge: Display the employees who make less than $\$ 40,000$ or have title 'EE' and are born after June 1, 1970.
-Dates are in YYYY-MM-DD format. e.g. '1970-06-01' Page 40

Join

A join combines two tables into a single table.

If the join has no condition that specifies which rows are in the result, all possible combinations of rows are in the result.
This is called a Cartesian or cross product.
If table R has N rows and X columns and table S has M rows and Y columns, then there are $N^{*} M$ rows and $X+Y$ columns in the cross product result.

In SQL, a cross product is done automatically if you put more than one table in the FROM clause and do not specify a condition on how to combine them.

- In most cases, this is NOT what you want to do!

Cartesian Product SQL Example

Emp Relation

eno	ename	title	salary
E 1 J. Doe EE 30000 E2 M. Smith SA E3 30000 E4 A. Lee ME	J. M iller	PR	20000

Proj Relation

pno	pname	budget
P1	Instruments	150000
P2	D B Develop	135000
P3	CAD/CAM	250000

eno	ename	title	salary	p no	pname	budget
E1	J. Doe	EE	30000	P 1	Instruments	150000
E2	M. Smith	SA	50000	P 1	Instruments	150000
E3	A. Lee	M E	40000	P 1	Instruments	150000
E4	J. M iller	PR	20000	P 1	Instruments	150000
E1	J. Doe	EE	30000	P2	DB Develop	135000
E2	M. Smith	SA	50000	P2	DB Develop	135000
E3	A. Lee	M E	40000	P2	DB Develop	135000
E4	J. Miller	PR	20000	P2	DB Develop	135000
E1	J. Doe	EE	30000	P3	CAD/CAM	250000
E2	M. Smith	SA	50000	P3	CAD/CAM	250000
E3	A. Lee	M E	40000	P3	CAD/CAM	250000
E4	J. M iller	PR	20000	P3	CAD/CAM	250000

Page 42

Databases

Cartesian Product

Question: R is a relation with 10 rows and 5 columns. S is a relation with 8 rows and 3 columns.
What is the degree and cardinality of the cartesian product?
A) degree $=8$, cardinality $=80$
B) degree $=80$, cardinality $=8$
C) degree $=15$, cardinality $=80$
D) degree $=8$, cardinality $=18$

Equijoin

In most cases, you only want to combine two tables and have rows in the result that satisfy a certain condition.

The most common type of join is an equijoin that combines two tables by matching columns that have the same value.
Equijoin gets its name because the columns are compared using the equality operator (=).
„e.g. WorksOn.pno = Proj.pno

Equifoin Example

WorksOn Relation

en0	pno	resp	dur
E1	P1	Manager	12
E2	P1	Analyst	24
E2	P2	Analyst	6
E3	P4	Engineer	48
E5	P2	Manager	24
E6	P4	Manager	48
E7	P3	Engineer	36
E7	P4	Engineer	23

Proj Relation

pno	pname	budget
P1	Instruments	150000
P2	D B Develop	135000
P3	CAD/CAM	250000
P4	Maintenance	310000
P5	CAD/CAM	500000

eno	pno	resp	dur	P.pno	pname	budget
E 1	P 1	Manager	12	P1	Instruments	150000
E 2	P 1	Analyst	24	P 1	Instruments	150000
E2	P 2	Analyst	6	P2	D B Develop	135000
E 3	P 4	Engineer	48	P4	Maintenance	310000
E 5	P 2	Manager	24	P2	D B Develop	135000
E 6	P 4	Manager	48	P4	M aintenance	310000
E 7	P3	Engineer	36	P3	C A D /C A M	250000
E 7	P 4	Engineer	23	P4	M aintenance	310000

What is the meaning of this join?

Equijoin in SQL

There are two ways of using equijoin in SQL. In WHERE clause:

```
SELECT *
FROM WorksOn, Proj
WHERE WorksOn.pno = Proj.pno
```

In FROM clause:

```
SELECT *
FROM WorksOn JOIN Proj ON WorksOn.pno = Proj.pno
```

Can simplify syntax by using alias to shorten table name: SELECT
FROM WorksOn AS W, Proj AS P
WHERE W.pno = P.pno

Join Query with Selection Example

You can use join, selection, and projection in the same query.
-Recall: Projection returns columns listed in SELECT, selection filters out rows using condition in WHERE, and join combines tables in FROM using condition specified in FROM or wHERE.

Example: Return the employee names who are assigned to the 'Management' department.

Join Query Examples

Return the department names and the projects in each department:

SELECT	dname, pname
FROM	dept, proj
WHERE	dept.dno $=$ proj.dno

Return the employees and the names of their department:

```
SELECT ename, dname
FROM emp JOIN dept ON emp.dno=dept.dno
```

Return all projects who have an employee working on them whose title is 'EE':

```
SELECT pname
FROM emp, proj, workson
WHERE emp.title = 'EE' and workson.eno=emp.eno
    and workson.pno = proj.pno

\section*{Join Practice Questions}

Emp Relation

WorksOn Relation
\begin{tabular}{|c|c|c|c|}
\hline eno & p no & resp & dur \\
\hline E 1 & P 1 & Manager & 12 \\
\hline E 2 & P 1 & Analyst & 24 \\
\hline E 2 & P 2 & Analyst & 6 \\
\hline E 3 & P 3 & Consultant & 10 \\
\hline E 3 & P 4 & Engineer & 48 \\
\hline E 4 & P 2 & Programmer & 18 \\
\hline E 5 & P2 & Manager & 24 \\
\hline E 6 & P 4 & Manager & 48 \\
\hline E 7 & P 3 & Engineer & 36 \\
\hline E 7 & P 5 & Engineer & 23 \\
\hline E 8 & P 3 & Manager & 40 \\
\hline
\end{tabular}

Compute the following joins (how many tuples?):
1) SELECT * FROM Emp JOIN WorksOn

ON Emp.eno = WorksOn.eno
2) SELECT * FROM Emp, Proj, WorksOn WHERE Emp.eno = WorksOn.eno AND Proj.pno \(=\) WorksOn.pno Page 49

\section*{Ordering Result Data}

The query result returned is not ordered on any column by default. We can order the data using the ORDER BY clause:
```

SELECT ename, salary, bdate
FROM emp
WHERE salary > 30000
ORDER BY salary DESC, ename ASC;

```
-ASC' sorts the data in ascending order, and 'DESC' sorts it in descending order. The default is 'ASC'.
The order of sorted attributes is significant. The first column specified is sorted on first, then the second column is used to break any ties, etc.

\section*{More Advanced Querying}

There are many more queries that we can ask a database:
compute expressions and functions
sgroup data by value and meaning
compute summary (aggregate) functions (max, min, sum, etc.)
subqueries (queries within queries)

We will not study the notation for this advanced querying.

\section*{Putting it All Together}

The steps to write an English query in SQL are:
1) Find the columns that you need and put in SELECT clause.
2) List the tables that have the columns in the FROM clause. If there is more than one, join them together.
४) If you must filter rows, add a filter criteria in WHERE clause.

Example: List project name and budget where a 'Manager' is working on the project.
```

SELECT pname, budget
FROM WorksOn, Proj
WHERE resp='Manager' AND WorksOn.pno = Proj.pno

```

\section*{Microsoft Access}

\section*{Microsoft Access is a simple database management system.} - It allows you to create databases, forms, reports, and programs.


\section*{Microsoft Access Query Interface}

Tables are boxes．Relationships are lines．Condition specified on bottom． switch vi button
\begin{tabular}{|c|c|}
\hline Queries & ＜ \\
\hline Example1＿EmpTitleEE & \\
\hline 铟 Example2＿OrderBy & \\
\hline 國 Example3＿JoinQuery & \\
\hline 國 SampleQuery & \\
\hline
\end{tabular}

Query Tools SampleQuery－Microsoft Access
Design



\section*{Microsoft Access Querying Basics}
1) Projection is performed by selecting the fields in the output in the field row in the table at the bottom of the screen.
2) Selection is performed by entering the condition in the criteria box. The criteria applies to the field in that column.
3) The tables used are added to the query by the Show Table... option.
4) Joins (based on relationships) are often automatically added, but if not, you can add them by selecting the join field in one table, holding the mouse button, then dragging to the join field in the other table.

\section*{Microsoft Access Query Views}

You may view your data, your query graphically, or your query in SQL.


\section*{Practice Questions}

Relational database schema:
```

emp (eno, ename, bdate, title, salary, supereno, dno)
proj (pno, pname, budget, dno)
dept (dno, dname, mgreno)
workson (eno, pno, resp, hours)

```
1) Return the project names that have a budget \(>250000\).
2) List all project names in department with name 'Accounting'.
3) For employee 'M. Smith' list the project number and hours for all projects that he worked on.
4) Return a list of all department names, the names of the projects of that department, and the name of the manager of each department.

\section*{Conclusion}

A database is a collection of related data. A database system allows storing and querying a database.

The basic query operations are selection (subset of rows), projection (subset of columns), and join (combine two or more tables).

SQL is the standard query language for databases, although Microsoft Access also provides a graphical user interface.

\section*{Objectives}

Define: database, database system
Explain how a DBMS achieves data abstraction.
Define: relation, attribute, tuple, domain, degree, cardinality, superkey, key
Given a relation, know its cardinality, degree, domains, and keys.

Given a relational schema and instance be able to translate very simple English queries into SQL.```

