
COSC 122
Computer Fluency

Computer Organization

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 122 - Dr. Ramon Lawrence

Key Points

 1) The standard computer (von Neumann) architecture consists
of a central processing unit (CPU) and memory that stores both
instructions and data.

 2) Understand the Fetch/Execute cycle performed by the CPU.

Page 3

COSC 122 - Dr. Ramon Lawrence

What Computers Can and Cannot Do

 Computers can only deterministically perform or execute
instructions to process information. The computer must have
instructions to follow.

 A computer has no imagination, intuition, or emotions. It has
no intelligence, free will, or its own purpose.

 We must specify precisely what the computer should do in the
form of instructions and the associated data. We will see how
a computer processes our instructions.

 A computer is useful not because it is “smart” but because it
can do simple operations very quickly.

A CPU at 1 GHz can perform about 1 billion operations/second.

Page 4

COSC 122 - Dr. Ramon Lawrence

Central Processing Unit

 A computer contains a Central Processing Unit (CPU) with
several components:

control unit – responsible for fetching, decoding, and executing
instructions

arithmetic/logic unit (ALU) – responsible for performing
mathematical functions (addition, subtraction, etc.) and logical
operations (AND, OR, NOT)

registers – specialized memory locations used during execution

 The CPU is connected to input/output devices and main memory
using the motherboard system bus (set of wires).

 This architecture is referred to as a von Neumann architecture
because it uses memory to hold both instructions and data.

The term came from the work of John von Neumann in 1945.

Page 5

COSC 122 - Dr. Ramon Lawrence

Memory

 Memory stores programs and data.

 Memory is divided into locations. Each
location has an address (usually 32-bits
long) and can store 1 byte.

We will show memory with each big cell
consisting of 4 bytes (one word).

Addresses are in decimal and start at 0.

locations

addresses

Questions:

1) What byte value is at address 0?

2) What byte value is at address 17?

3) What word value is at address 16?

4) What word value is at address 28?

 A B C D

 12345678

0 00000000

Memory

...

0 1 2 3

4

8

12

16

20

24

28

32

36

40

44

48

Page 6

COSC 122 - Dr. Ramon Lawrence

Aside: Storing Characters in Memory

 Recall that an ASCII character occupies one
byte of space.

 In the memory is the string HELLO WORLD
stored at address 0.

Remember that the computer stores things in
binary. To the computer, this looks like: 48 45
4C 4C 4F 20 57 4F 52 4C 44 00.

Note that A = 65 = 41 (hex), B = 66 = 42 (hex), etc.
Also, we terminated the string with NULL (00).

Questions:

1) Store the string "COMPUTER" in memory

starting at address 20. End string with 00.

2) Store your name as a string starting at 16.

 R L D

0 H E L L

O W O

Memory

...

0 1 2 3

4

8

12

16

20

24

28

32

36

40

44

48

Page 7

COSC 122 - Dr. Ramon Lawrence

Computer Instructions

 The CPU has hardwired only a very few basic operations or
instructions that it can perform:

read a memory location into a register

write a register value to a memory location

add, subtract, multiply, divide values stored in registers

shift bits left or right in a register

test if a bit is zero or non-zero and jump to new set of
instructions based on the outcome

sense signals from input/output devices

 All programs are composed of these basic operations.

Page 8

COSC 122 - Dr. Ramon Lawrence

The Fetch/Execute Cycle

 The computer performs the following cycle of operations to
process instructions:

Instruction Fetch (IF) - retrieve instruction from memory

Instruction Decode (ID) - lookup meaning of instruction

Data Fetch (DF) - fetch data for instruction

Instruction Execution (EX) - execute instruction

Result Return (RR) - return result to register

 A special register called the program counter (PC) stores the
address of the next instruction to execute.

Since each instructor is 4 bytes long, the PC is incremented by
4 every time an instruction is executed unless a branch is
performed.

Page 9

COSC 122 - Dr. Ramon Lawrence

CPU and Memory Diagram

Bus

R0 00000000

R1 00000000

R2 00000000

R3 00000000

PC 00000000

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

CPU

Inst: 00000000

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Memory

 A B C D

 12345678

0 00000000

...

0 1 2 3

4

8

12

16

20

24

28

32

36

40

44

48

Page 10

COSC 122 - Dr. Ramon Lawrence

Decoding Computer Instructions

 How the instructions are encoded in bits depends on the
processor and computer architecture. Just like with the ASCII
lookup table, each bit sequence represents some instruction.

 We will encode instructions using simple character strings.

Each instruction has one, two, or three parameters or operands.

G [address] [register] – Get data from memory at address and
put in to the register

e.g. G 16 R1 – Get address 16 and put in register 1

P [address] [register] – Put data in register to memory at address

e.g. P 20 R2 – Put data in register 2 into memory address 20

+ [reg1] [reg2] [reg3] – Store in reg3 result of reg1+ reg2

 - [reg1] [reg2] [reg3] – Store in reg3 result of reg1- reg2

e.g. + R0 R1 R2 – Store in register 2 result of register 0 + register 1

Page 11

COSC 122 - Dr. Ramon Lawrence

Example:
Executing Move Instruction

R0 00000000

R1 00000000

R2 00000000

R3 00000000

PC 00000000

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: 00000000

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Instruction: GET 28, R2

 A B C D

 12345678

0 G 28 R2

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 12

COSC 122 - Dr. Ramon Lawrence

Example:
Executing Move Instruction - Fetch

R0 00000000

R1 00000000

R2 00000000

R3 00000000

PC 00000004

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: G 28 R2

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Program counter is for address 0. Fetch from memory.

Increment program counter by 4.

 A B C D

 12345678

0 G 28 R2

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 13

COSC 122 - Dr. Ramon Lawrence

Example:
Executing Move Instruction - Decode

R0 00000000

R1 00000000

R2 00000000

R3 00000000

PC 00000004

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: G 28 R2

Param1: 28

Param2: R2

Param3: 00000000

Control Unit

 GET 28, R2

Decode instruction. It is a move instruction.

Set param1 to be 28 for memory address and param2 to be register 2.

 A B C D

 12345678

0 G 28 R2

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 14

COSC 122 - Dr. Ramon Lawrence

Example:
Executing Move Instruction – Execute

R0 00000000

R1 00000000

R2 12345678

R3 00000000

PC 00000004

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: G 28 R2

Param1: 28

Param2: R2

Param3: 00000000

Control Unit

No data fetch (performed during execute).

Instruction execution: Fetch memory location 28 and put in R2.

No result return.

 A B C D

 12345678

0 G 28 R2

...

4

8

12

16

20

24

28

32

36

40

44

48

 GET 28, R2

Page 15

COSC 122 - Dr. Ramon Lawrence

Question:
Instruction Execution

R0 00000000

R1 00000000

R2 12345678

R3 00000000

PC 00000004

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: 00000000

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Question: Write the instruction GET 32, R0.

Put this instruction in location 4 and explain how it gets executed.

 A B C D

 12345678

 11111111

0 G 28 R2

????????

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 16

COSC 122 - Dr. Ramon Lawrence

Example:
Add Instruction Execution

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000008

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: 00000000

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Instruction: ADD R1, R2, R3

 + R1R2R3

 A B C D

 12345678

 11111111

 00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 17

COSC 122 - Dr. Ramon Lawrence

Example:
Add Instruction Execution - Fetch

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000012

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: + R1R2R3

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Program counter is for address 8. Fetch from memory.

Increment program counter by 4.

 + R1R2R3

 A B C D

 12345678

 11111111

 00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 18

COSC 122 - Dr. Ramon Lawrence

Example:
Add Instruction Execution - Decode

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000012

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

 ADD R1, R2, R3

Decode instruction to determine it is an add. Set param1 to R1 (register 1),

param2 to R2 (register 2), and param3 to R3 (register 3).

Prepare ALU to receive command and inputs.

 + R1R2R3

 A B C D

 12345678

 11111111

 00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 19

COSC 122 - Dr. Ramon Lawrence

Example:
Add Instruction Execution – Data Fetch

No data must be fetched from memory. Nothing to do in this step.

 + R1R2R3

 A B C D

 12345678

 11111111

 00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000012

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

 ADD R1, R2, R3

Page 20

COSC 122 - Dr. Ramon Lawrence

Example:
Add Instruction Execution – Execute

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000012

Registers

Input1: 00000111 Input2: 12345678

ALU

Op: ADD Output: 12345789

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

 ADD R1, R2, R3

Execute instruction by passing operation and parameters to ALU.

Assume ALU knows operation is an ADD.

ALU executes the add (which may take some time) and result is in output.

 + R1R2R3

 A B C D

 12345678

 11111111

 00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 21

COSC 122 - Dr. Ramon Lawrence

Example:
Add Instruction Execution – Return

R0 00000000

R1 00000111

R2 12345678

R3 12345789

PC 00000012

Registers

Input1: 00000111 Input2: 12345678

ALU

Op: ADD Output: 12345789

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

 ADD R1, R2, R3

Output result from ALU is returned into register 3 as required.

 + R1R2R3

 A B C D

 12345678

 11111111

 00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 22

COSC 122 - Dr. Ramon Lawrence

Question:
Instruction Execution

Question: Encode the instruction to put the data in register 3 into memory

address 40. Instruction goes in address 12.

 Explain how this instruction gets executed.

R0 00000000

R1 00000111

R2 12345678

R3 12345789

PC 00000012

Registers

Input1: 00000111 Input2: 12345678

ALU

Op: ADD Output: 12345789

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

 + R1R2R3

 ????????

 A B C D

 12345678

 11111111

 00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 23

COSC 122 - Dr. Ramon Lawrence

CPU

 Question: Which of these is NOT a component of the CPU?

 A) control unit

 B) arithmetic logic unit

 C) bus

 D) registers

Page 24

COSC 122 - Dr. Ramon Lawrence

Fetch/Execute Cycle

 Question: Put the steps in order for the Fetch/Execute cycle:

 1) Data Fetch (DF)

 2) Result Return (RR)

 3) Instruction Execution (IE)

 4) Instruction Fetch (IF)

 5) Instruction Decode (ID)

 a) IF,ID,DF,IE,RR

 b) ID,IF,DF,RR,IE

 c) IF,IE,ID,DF,RR

 d) IF,DF,IE,ID,RR

Page 25

COSC 122 - Dr. Ramon Lawrence

How many fetch/execute cycle steps?

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000008

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: 00000000

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

How many of the 5 fetch/execute steps are performed when

executing the statement at memory address 8?

a) 1 b) 2 c) 3 d) 4 e) 5

 + R1R2R3

 A B C D

 12345678

 11111111

 00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 26

COSC 122 - Dr. Ramon Lawrence

Instruction Execution Result

Question: What is the value of R2 after executing the statement at location 8?

A) 0 B) 111 C) 12345678 D) 12345789 E) None of the above

R0 00000000

R1 00000111

R2 12345678

R3 12345789

PC 00000008

Registers

Input1: 00000111 Input2: 12345678

ALU

Op: ADD Output: 12345789

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

 + R0R1R2

 P 44 R1

 A B C D

 12345678

 11111111

 00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

Page 27

COSC 122 - Dr. Ramon Lawrence

Challenge Question:
Writing a Simple Program

 Write a simple program that computes the following:

result = (A + B) * C

Assume A is at location 52, B is at 56, C is at 60.

Let A=5, B=2, C=10 then the result should be 70.

Store result at location 64.

Your program instructions should begin at address 0.

 Be prepared to explain how the program works when executed.

 HINT: You will need 6 instructions (3 GET, 1 ADD, 1 MULTIPLY,
1 PUT). Use the “*” to denote a multiply expression.

Page 28

COSC 122 - Dr. Ramon Lawrence

Assembly and Machine Programming

 The previous examples are similar to assembly programming.

 Machine programming involves specifying commands directly
in binary form. Assembly language is a slightly higher level of
commands which look more like English commands (MOVE,
ADD) that are then translated to machine language before
execution.

 Most programmers do not write code in assembly or machine
language because it is too low-level and time-consuming.

Page 29

COSC 122 - Dr. Ramon Lawrence

Higher-Level Programming

 Higher-level programming languages (such as HTML and
JavaScript) are more powerful and easier to use because they
have more powerful features and functions.

The programmer does not have to specify all the details at a low-
level and can use more general commands.

Note that this is another form of abstraction.

 Every language for communicating instructions to the computer
must ultimately be translated to machine language for execution.

The tools that translate to machine language are called
compilers. Compilers verify that code has correct syntax before
performing the translation.

Page 30

COSC 122 - Dr. Ramon Lawrence

Branch and Jump Instructions

 One type of instruction that is available in all languages is
called a branch or jump instruction.

 A branch instruction allows the program to execute different
parts of code depending on certain conditions. Example:

 A branch instruction is implemented by making a decision
whether or not to branch (usually a comparison) then setting
the program counter to the address of the next instruction.

IF hungry THEN

 eat something

ELSE

 go work

Page 31

COSC 122 - Dr. Ramon Lawrence

Computer Speed

 The speed that a computer can execute a program depends on
many things:

the speed of the CPU

the speed of the bus, memory, and other devices

the type of program and its characteristics

the amount of parallelism and pipelining in the CPU

 Historical example:

 Apollo Guidance Computer had 2.048 MHz processor, 32KB of
RAM, 4KB of ROM, and 8 16-bit registers.

Page 32

COSC 122 - Dr. Ramon Lawrence

Computer Speed in GHz

 The most basic measurement is the speed of the CPU clock
because it is a rough estimate of the number of instructions that
can be executed per second.

 CPU speed is measured in hertz or cycles per second. The
clock of typical CPUs perform billions (giga-) cycles per
second, so the measurement is in giga-hertz (GHz).

A computer with a 2 GHz CPU has the potential for executing 2
billion instructions per second.

 Note that measuring computer performance simply on clock
speed has been used as a marketing tool. As computers have
become faster and more complex, CPU clock speed in GHz is
not the best measurement.

Page 33

COSC 122 - Dr. Ramon Lawrence

Aside: Advanced Processor Issues

 Our explanation of how a processor works is a high-level
abstraction of how they work in practice.

 Processors may have multiple dedicated hardware, complex
pipelining features, cache memory, and other optimizations.

 Some other terminology:

dual/quad core – means that there are two/four processing
units on the same chip. The units may share subcomponents.

dual processor – means that there are two separate
processing units on different chips. Each processor appears
distinct to the operating system.

32-bit or 64-bit – describes the size of the basic memory unit
and is also related to the bus size.

Page 34

COSC 122 - Dr. Ramon Lawrence

Operating Systems

 An operating system is software written to perform the basic
operations that are necessary for the effective use of the
computer that are not built into the hardware.

 Three most widely used Operating Systems:

Microsoft Windows

Apple's Mac OS X

Linux/Unix

 The operating system performs booting, memory management,
device management, Internet connection, file management,
and provides a platform for the execution and development of
programs.

Page 35

COSC 122 - Dr. Ramon Lawrence

Computers and Electricity

 Computer components consist of gates and circuits that control
the flow of electricity.

 A gate is a device that performs a basic operation on electrical
signals.

Common gates: AND, OR, NOT, XOR

 A circuit is a combination of gates that performs a more
complicated task.

Page 36

COSC 122 - Dr. Ramon Lawrence

Constructing Gates using Transistors

 A transistor may either conduct or block flow of electricity
based on input voltage (functions like a switch).

Made of semiconductor material such as silicon.

 An integrated circuit is contains both transistors and wires
that connect them. manufactured during same process.

Invented by Jack Kilby and others at Texas Instruments in
1958. They received the Nobel Prize in Physics in 2000.

First integrated circuit:

Page 37

COSC 122 - Dr. Ramon Lawrence

Summary: Putting it All Together

An application is written by a programmer to solve a task using
a programming language.

The application uses features of the operating system to
perform certain functions.

The program is translated (compiled) into machine language for
the computer to use. This form is simply a sequence of bytes.

The byte sequence (binary file) is read from the hard drive into
memory by the operating system when executed.

The commands are executed using the fetch/execute cycle.

The commands are implemented in hardware on silicon on
integrated circuits that are produced using photolithography.

The CPU contains a control unit and arithmetic logic unit that
performs the basic operations. By controlling the flow of
electricity, different states and operations are performed.

Page 38

COSC 122 - Dr. Ramon Lawrence

Conclusion

 The standard computer (von Neumann) architecture consists of
a CPU, memory, a bus, and input/output devices.

 The five basic steps of the fetch/execute cycle are:

Instruction Fetch

Instruction Decode

Data Fetch

Instruction Execution

Result Return

 Hardware commands are encoded on integrated circuits using
gates that consist of transistors etched on silicon
(semiconductor).

Page 39

COSC 122 - Dr. Ramon Lawrence

Objectives

Describe the von Neumann architecture (computer anatomy).
Draw the diagram, and list and explain its main components.

Explain the organization of memory in terms of locations and
addresses.

Define and list examples of: input/output device, peripheral

List and explain the three major components of the CPU.

Advanced: Explain the key feature of the von Neumann
architecture.

List some of the basic CPU instructions.

List and explain the five steps of the fetch/execute cycle.

Explain the purpose of the program counter register.

Advanced: Explain how instruction decoding works and be able
to decode an instruction using our format.

Page 40

COSC 122 - Dr. Ramon Lawrence

Objectives (2)

Be able to explain and demonstrate the fetch/execute cycle for
a small program.

Define: machine language, assembly language

Explain the difference between a high-level programming
language and assembly/machine language.

Define: compiler

Define: branch instruction

List some factors in determining a computer's speed.

Define: gate, circuit, integrated circuit, transistor, semiconductor

