COSC 122
 Computer Fluency
 Course Introduction

Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca

Technology is For Everyone

It does not matter what discipline you are studying or what job you get in the future, technology is a critical part of your life.
\bullet Business: sales and marketing data analysis and planning Science: modern science requires computational experiments Arts: digital and artistic creativity, global and social impacts Life: Can you live without your phone or the Internet? Can you imagine the technologies in the next 20 years?

Beyond the technology, this course will encourage you to think differently by learning how to communicate precisely, think critically, and problem solve algorithmically.

Course Objectives

1) To understand common computer terminology
2) To learn the basics of networking and Internet applications
3) To be exposed to the fundamental concepts of information representation, abstraction, and algorithmic thinking
4) To try simple programming by creating web sites in HTML and JavaScript
5) To use word processors, spreadsheets, and databases to manipulate, document, and analyze information
6) To appreciate the role and effect of IT in society Page 5

The Essence of the Course

If you walk out of this course with nothing else you should:

Become a sophisticated user by understanding the basic skills and concepts of Information Technology.

This course is more than using apps and Office!
We will answer questions like:
\bullet How does the computer and the Internet work?
-What is a program? How do I tell the computer what to do?
\bullet What are the social challenges of an information society?
-How do I become a life-long productive IT user?
This course shows how technology works, the fundamentals of IT, and how to think (and create) differently. Page 2

My Course Goals

My goals in teaching this course:
\bullet Summarize and document the information in a simple, concise, and effective way for learning.
-Strive for all students to understand the material and pass the course.
-Be available for questions during class time, office hours, and at other times as needed.
\bullet Provide an introduction to computers, applications, the Internet, and simple programming.

- Help students become fluent computer users with an understanding of a wide variety of applications and the capability of life-long productivity with technology.
\bullet Encourage students to continue with other computer science courses

Academic Dishonesty

Cheating in all its forms is strictly prohibited and will be taken very seriously by the instructor.

A guideline to what constitutes cheating:

- Assignments
\leftrightharpoons Working in groups to solve questions and/or comparing answers to questions once they have been solved (except for group assignments).
\Rightarrow Discussing HOW to solve a particular question instead of WHAT the question involves.

-Exams

\Rightarrow All exams are closed book, so no course materials should be present.

Academic dishonesty may result in a "F" for the assignment or course and all instances are recorded in the Dean's office

How to Pass This Course

The most important things to do to pass this course:

- Attend class
\Rightarrow Read notes before class as preparation and try the questions.
- Attend the labs and do all lab assignments
\Rightarrow Labs are for marks and are practice to learn the material for the exams.
To get an " A " in this course do all the above plus:
\bullet Practice programming and working with applications.
-Do more questions than in the labs. Practice makes perfect.

Systems and Tools

Connect is used for a discussion board, for posting marks, and for anonymous feedback.
\bullet Please use the discussion board and feedback survey.

All software is available in the laboratory at SCI 126/FIP 133.

The Lab Assignments

In each lab we will work on computers on a lab assignment.

Lab assignments are worth 20% of your overall grade.
Lab assignments may take more than the two hours lab time.
You have at least one week after your lab to complete it.

- No late assignments will be accepted.
\bullet An assignment may be handed in any time before the due date.

Lab assignments are done individually or in groups of two depending on the assignment.
The lab assignments are critical to learning the material and are designed to prepare you for the exams!

Page 10

The In-Class Quizzes

To encourage attendance and effort, 10\% of your overall grade is allocated to answering in-class questions.
These questions are answered electronically using a clicker.

- The clicker can be purchased at the bookstore and sold back to the bookstore like a used textbook.
- The clicker is personalized to you with your student number.
- At different times during all the lectures, questions reviewing material will be asked. Reponses are given using the clickers.
There will be at least 100 questions throughout the semester. Each question is worth 1 mark, and you need at least 80 right answers to get the full 10%.
- That is, if you answer 60 questions right, you get 60/80 or 75%. Thus, do not worry if you must miss a class or two or forget your clicker one day!

Page 12

Why are you here?
Reasons Why People Take This Course
A) I want an easy credit.
B) I want an easy Science credit (Arts Majors).
C) I want to learn more about Microsoft Office.
D) I want to learn more about how technology works.
E) I am interested in computing, web development, programming, or future courses.

What to Learn
 What Topic are You Most Interested In?

A) Microsoft Office (Word, Excel, Access)
B) How the Internet/Computers Work
C) Building Web Pages using HTML/JavaScript Programming
D) The Effect of Technology on Society
E) None of the above

What do you expect?
What Grade are You Expecting to Get?
A) A
B) B
C) C
D) D
E) F

Why this Course is Important

This course is designed to introduce the fundamental skills and concepts of Information Technology. You will learn to become a sophisticated user that is knowledgeable about how the technology you use works.

Important results:
-Office Software Proficiency - Every person needs to know how to use basic office software (editors, spreadsheets, and databases). We will cover these fundamental skills.
-The Internet and You - We will learn the basics of Internet terminology, how it works, and how it effects you.
\bullet Web Development - We will build simple web sites using HTML and JavaScript.
-Deeper Understanding - We will see how technology works and appreciate the awesome capabilities, challenges, and opportunities in Information Technology.

What to Learn
What Topic are You Most Interested In?
A) Microsoft Office (Word, Excel, Access)
B) How the Internet/Computers Work
C) Building Web Pages using HTML/JavaScript Programming
D) The Effect of Technology on Society
E) None of the above

Why are you here?

Reasons Why People Take This Course

A) I want an easy credit.
B) I want an easy Science credit (Arts Majors).
C) I want to learn more about Microsoft Office.
D) I want to learn more about how technology works.
E) I am interested in computing, web development, programming, or future courses.

What do you expect? What Grade are You Expecting to Get?
A) A
B) B
c) C
D) D
E) F
Key Points

1) People do not have any natural technological abilities, so
systems are designed to match users previous knowledge
about the domain or other systems.
2) Fundamental concepts of information technology:
abstraction
3) Progralization
order to instrumon Lawrence
act of writing out the steps of an algorithm.
Prominking

Computers

A computer is a device that can be programmed to solve problems.

Question: Is a cell phone a computer?
A) yes
B) no

Computers Are Everywhere

Computers are not just desktops and laptops but also tablets, smart phones, and embedded chips in consumer electronics cars, televisions, and appliances.
\Rightarrow There have been over 30 billion ARM embedded processors shipped
\Rightarrow There are over 350 million computers sold annually.

Question: If you consider this general definition of "computer", how many "computers" do you own?
A) 0
B) 1 to 5
C) 6 to 10
D) 11 to 20
E) 21 or more

Computer Components
 The Monitor

The monitor is a video screen that displays information stored in the computer's memory. Monitor types:
-LCD - liquid crystal displays - slim, flat monitors
-LED - light-emitting diode - LCD with power efficient semiconductor backlight source
-touch/multi-touch - capacitive touchscreen (human touch distorts electrostatic field) or resistive (force connects layers)

The screen is divided into a grid of pixels. (picture elements)
Common screen sizes: 1024×768 and 1280×800
-The more pixels the finer (more detailed) the resolution and the crisper images appear.
-Pixel density is number of pixels in an area. iPhone has 326 pixels/inch compared to about 120 for laptops.

Screen Resolution	iPhone Resolution
Question: The current screen resolution is 1024×768 pixels, and we change the screen resolution to 1280×800 pixels. What happens to the text (characters) on the screen:	Question: A common screen resolution for a 17" monitor is 1280×1024. The iPhone5 screen is 4 ". The iPad4 screen is 9.7". Select a true statement:
A) get smaller	A) The 17 " monitor resolution of 1280×1024 is significantly higher than the iPhone5 and iPad4.
B) get larger	B) The iPad4 screen resolution is about twice the iPhone5.
C) stay the same size	C) The resolution of all three displays is very close to each other (within 10\%).
Page 11	Page 12

Computer Components The Bitmapped Monitor

A monitor is bitmapped as each pixel on the screen shows the values of one or more bits in the computer's memory.
-Black and white - only one bit needed (black $=1$, white $=0$)
Colors - may have multiple bits representing relative intensities of three primary colors: red, green, blue (RGB)
\Rightarrow Note: Mixing light primary colors is different than pigment primary colors: red, yellow, blue.

Computer Components
 Processor

The Central Processing Unit (CPU) or processor is the "brains" of the computer as it directs data flow inside the machine and knows how to perform basic operations.

CPU executes program instructions, performs math operations, fetches/stores data in memory, controls data flow of devices.

- e.g. Intel Pentium/Core/Xeon, AMD Athlon/Phenom, Apple A6 (ARM processor) (iPhone)

Computer Components Memory

Memory - is the general term for devices which allow the computer to store data either temporarily or permanently.
\bullet Temporary memory: only stores data while the computer is on \Rightarrow random-access memory (RAM) stores data and programs while the computer is on and is a fast, common type of memory
\bullet Permanent memory: data is stored even after computer is off \Rightarrow read-only memory (ROM) is permanent memory that cannot be changed \Rightarrow Most permanent memory is considered secondary storage because the memory is stored in a separate device (hard drive, DVD, flash).
\Leftrightarrow Since memory in secondary storage is in a separate device, the device is capable of holding more data, but is often slower than main memory.
Cache - is a term used to describe memory which stores a subset of the memory in a larger memory for performance.
\bullet processor cache (Level 1 \& 2), disk cache, network cache

Computer Components Flash Memory

Flash memory is used in many portable devices (USB, cell phones, music/video players) and also solid-state drives.
\bullet Flash memory is permanent memory.

Flash memory replaces random access memory in portable devices. It can also be used for secondary storage (USB devices) or to replace hard drives.

Flash drives have many benefits over hard drives including:

- Increased performance (especially random reads)
- Better power utilization
- Higher reliability (no moving parts)

Research Question
 Solid State Disk Defragmentation

Question: TRUE or FALSE: Disk defragmentation should be performed on solid state disks (SSDs) just like hard drives (HDs).
A) true
B) false

$2 \sqrt{2}$
 Sequential vs. Random Access

RAM, hard drives, and flash memory allow random access. Random access means that you can access any location in any order.

Tape drives and VCR tapes allow sequential access.
Sequential access means that you can only get to a particular location by visiting previous locations in sequential order.
-That is, you cannot skip ahead, but must go through the tape in order until you reach the desired location.

Computer Components
 Memory Size

Memory size - is a measure of memory storage capacity
\bullet Memory size is measured in bytes.
\Rightarrow Each byte contains 8 bits - a bit is either a 0 or a 1 . \Rightarrow A byte can store one character of text.

- Memory sizes are measured in: \Rightarrow kilobytes (KBs) $\quad-1,000$ bytes (one thousand) \Rightarrow megabytes (MBs) - 1,000,000 bytes (one milion) \Rightarrow gigabytes (GBs) - 1,000,000,000 bytes (one billion) \Rightarrow terabytes (TBs) $-1,000,000,000,000$ bytes (1,000 billion) Various memory devices and their storage capacities:
\bullet RAM (Main memory) : 2 GB to 256 GB
- Hard Drive : 100 GB to 2 TB
-CD-ROM/DVD: 640 MB / 10 GB

"The Cloud"

"The Cloud" is not part of your computer but rather a network of distributed computers on the Internet that provides storage, applications, and services for your computer.

These systems and services simplify tasks that otherwise would be done by programs on your computer.

Examples:

-Dropbox is a cloud service that allows you to store your files on machines distributed on the Internet. Automatically synchronizes any files in folder with all your machines.

- iCloud is an Apple service that stores and synchronizes your data, music, apps, and other content across Apple devices.

Research Question
 Cloud Computing

Question: What company had the largest cloud computing company based on revenue in 2012? Consider only revenue from cloud computing services.
A) Microsoft
B) Apple
C) Amazon
D) Google
E) IBM
What is programming?
Programming is the process of constructing programs in order
to instruct a computer on how to Ramon Lawrence
writing out the steps of an algorithm.
A program is a sequence of simple computer instructions in
some language which tell the computer the necessary steps to a problem or complete a task.
solve and
A language is the structure and syntax used to communicate to
the computer the tasks it is required to perform.
We all "program" by giving instructions to others!

Generalization

Generalization is applying a common idea or concept in many different situations.

- Note: Generalizations may not apply in every single situation.

There may be "exceptions to the rule."

Examples:
-Cars generally have their pedals/controls in the same locations.
-Caps usually twist left (counter-clockwise) to loosen and right (clockwise) to tighten.

> Page 31

Technological Ability is from Experience not Genetics

People do not have natural technological abilities.

Our experience using systems helps us know what to expect. Designers who create devices know about this experience and design products to match what we already know.

Understanding how a system works allows us to be more effective users.
\bullet e.g. By knowing that lids usually twist counter clockwise to loosen, we know which way to twist if they are stuck.

Question: When you get a new gadget do you read the manual first or starting using it right away? Does it depend on what type of gadget it is? Page 33

Designing Software for Users

Products are designed to make it simpler for users to use them.
Software designers use two key ideas:
-1) Users have knowledge of the domain of the software including prior experience with non-computer products.
\Rightarrow E.g. The desktop environment on a computer is a metaphor as working at a computer is similar to working at a desk. Now everything is touch!
\Rightarrow Question: What do these buttons do?

-2) Users have knowledge of other software and user interfaces that can be transferred to a new application if developed consistent with this prior experience.
\Rightarrow e.g. command buttons, sliders, etc.

Experimenting with Software
The key to being a expert user is to:
be willing to apply past knowledge to learn new software
The easiest way to learn software is to experiment with its
features and interface. Nothing will break... usually...
Watching others is another good way to learn.

Virtual World
The virtual world and experiences provided by computers is limited only by creativity and imagination. Although our interactions with computers is based on familiar, real-world concepts and abilities, computers provide new opportunities and experiences not controlled by physical reality. Examples: Communications: Facebook, Twitter, messaging, email Creativity: Almost anyone can create art or music or videos and world-wide audience. share

Technology: Taking IT Personally

When learning a new software program ask yourself: -What do I have to learn about this software to do my task? \bullet What does the designer of this software expect me to know?
\bullet What additional information does the software need to do its task?

To evaluate if you need to change your IT use, ask yourself: \rightarrow Is there IT that I am not now using that could help me?
\bullet Am I more or less productive using this technological solution?
-Can I customize the technology to improve my productivity?
-Have I assessed my uses of information technology recently?

Innovation Adoption
Question: Which of the categories for innovation adoption do you fall in? A) Innovators B) Early adopter C) Early majority - Dr Ramon Lawences D) Late majority E) Laggards

Is There Any Money in IT?		
The opportunities to profit from IT knowledge are enormous. There are numerous IT jobs and opportunities for businesses.		
Job	Salary	Description
IT support	\$35-75,000	Technical support for users
Computer trainer	\$35-50,000	Train users on software/hardware
Database Admin	\$55-100,000+	Develop/maintain databases
Data entry staff	\$20,000+	Input information into systems
Systems manager	\$80,000+	Manager position, CIO
Network admin.	\$50-95,000	Manage organization network
Programmer	\$60-100,000+	Develop and test software
Software engineer	\$50-100,000+	Design software systems with users
Technical writer	\$40-80,000	Write user documentation for systems
Webmaster	\$50-75,000	Develop web sites and marketing
IT Business	\$\$\$\$\$	Easiest way to be a millionaire...pere 42

Conc/uSIOn
A computer consists of numerous components, but as users we
can normally abstract away the hardware internal functions.
Since a computer is very fast but not very smart, a computer
must be given instructions or programs in the form of software.
Software is developed by programming an algorithm in a
language that the computer understands. Programming
involves specifying precisely the sequence of operations and
representation of information used.
We become more effective users of technology if we use the
correct terminology, understand how systems work, and are
confident on using prior knowledge to learn new systems. Page 43

Objectives

- Explain why it is important to understand and use IT terminology.
-List some reasons why there are so many IT terms.
Define: computer, hardware, software
-Define: monitor, LCD, pixel, bitmapped
Define: processor, memory (temporary/permanent), cache
Compare: random vs. sequential access
-Define: motherboard, bus
\bullet Define: algorithm, program, language, programming
Define: abstraction, generalization, analytical thinking
List and explain four ideas designers use to make their software easier for us to use.
- Explain the characteristics of an expert user.
\bullet List and explain the five steps in the innovation lifecycle. Page 44

Review
Memory - Temporary or Permanent
Question: Is main memory (RAM) in your computer temporary or permanent?
A) temporary
B) permanent

Review
Memory - Temporary or Permanent
Question: Is your hard drive considered temporary or permanent memory?
A) temporary
B) permanent

Review
Sequential vs. Random Access
Res

Question: What device performs sequential access?
A) main memory (RAM)
B) DVD
C) $V C R$
D) iPod
E) hard drive

Review
Programming
Question: Match the programming related terms with related terms in cooking. Programming, Language, Algorithm, Program 1) Cooking 2) Recipe written in French 3) English 4) Recipe 5) Writing a cook book A) $1,3,2,4$ B) $5,3,4,2$ C) $5,3,2,4$ D) $1,3,4,2$

Review

Hard Drive Terminology
Question: Put the following hard drive terminology in order of smallest to largest size:
platter, sector, cylinder, track
A) platter, sector, cylinder, track
B) sector, cylinder, track, platter
C) sector, track, cylinder, platter
D) sector, track, platter, cylinder

Key Points

1) Networks allow computers to communicate information.
2) Communication requires a shared medium, a common language, and a protocol.
3) TCP/IP is the standard protocol for computers on the Internet.
4) The Internet and computers have made a significant impact on our lives, both positive and negative.

Page 3
Example: What are the medium, language, and protocol used in a classroom lecture like this one?

Types of Communication Synchronous vs. Asynchronous

Communication can be categorized in several ways.

Synchronous communication is when the sender and receiver are active at the same time.
\bullet e.g. telephone call, instant messaging
Asynchronous communication is when the sending and receiving occur at different times.
-e.g. email
Communication can be categorized in several ways.

Aside: Spam

Spam is unsolicited e-mail.
Marketers can flood a person's mailbox with unwanted e-mail messages. By design, the receiver is forced to accept these messages which are most likely deleted or filtered out by their e-mail software (spam filter).
\bullet White list - accepted sender ; black list - rejected sender

Spam may have derived from a Monty Python skit in which the word "spam" was chanted by Vikings in a restaurant and their chants drowned out other conversation.
Question: How does the Vikings' chants relate to the three communication issues of shared medium, language, and protocol? Which of these were they exploiting?

Medium, Language, and Protocol

Question: Fill in the blanks: The Vikings' repetition of "spam" drowned out other conversations because they were not following the \qquad for the \qquad —.
a) language / medium
b) medium / protocol
c) language / protocol
d) protocol / medium

Practice Questions

Determine if the following are synchronous or asynchronous and broadcast or point-to-point:

- radio
-classroom lecture
- instant messaging
-e-mail
telephone call
- postcard
- whispering to another person
- wireless Internet (challenging)
-Others?

COSC 122 - Dr. Ramon Lawrence

Five Internet Layers

application: supports messages between programs
$\bullet e . g$. HTTP between browser and server transport: process-to-process data transfer -e.g. TCP - guaranteed message delivery network: send packets from source to destination
-e.g. IP - send message to any machine link: data transfer between neighbors e.g. Ethernet - communicate within building
 physical: encoding of bits on medium
\bullet e.g. send signals over CAT5 wire

Top-level Domains		
Top-level domains appear in the last part of domain name: Top-level domains are controlled by ICANN. Many new domains have been recently approved (2011) allowing for considerable freedom in naming. e.g. .soda or .pizza -Controversial one: .xxx for pornography sites		
Page 17		

I am on the Internet... Now what?

 IP AddressesA computer on the Internet is given a unique identifier called an Internet Protocol (IP) address.
\bullet An IP address is similar to your telephone number.

An IP version 4 (IPv4) address consists of 4 numbers in the range of 0 to 255 . The numbers are separated by dots.

- Example: 142.231.95.1

Since there are an increasing number of computers and devices being added to the Internet, there is an ongoing transition to IP version 6 (IPv6) addresses which have 16 numbers from 0-255 represented in hexadecimal.
-Example: 2002:CE57:25A2:0000:0000:0000:CE57:25A2
Page 14

DNS Servers

The Domain Name System (DNS) translates the humanreadable names into IP addresses. There are DNS servers on the Internet which provide this mapping function.
\bullet A DNS server has a similar function as a phonebook.
Each Internet computer knows the IP address of its nearest DNS server. When you use a domain name in a request, your computer asks the DNS server to look up the IP address.

If the closest DNS server does not know the IP address, it asks a root name server, which keeps the master list of name-toaddress relationships.

- There are 13 root name servers (with multiple mirrored instances) distributed across the globe.

Page 18

Review

Broadcast vs. Point-to-Point

Question: Select one that performs broadcast communication.
A) radio
B) classroom lecture
C) telephone call
D) email

Review
Domain Names
Question: Which part of the address people.ok.ubc.ca is the largest (most general) domain? A) people B) ok C) ubc D) ca

Review
 Synchronous vs. Asynchronous

Question: Select one that performs synchronous communication.
A) email
B) letter
C) telephone call
D) television

CoSC 122 - Dr. Ramon Lawrenc
A)

Review
IP Address
Question: Which one of the following is a valid IP4 address?
A) 0.0 .0 .0
B) 255.255 .255 .255 .255 .255
C) 1.2.3.256
D) 111.222 .3456

Clients and Servers
 A server is a computer that stores information such as a web page, e-mail, database, etc.
 A client is a computer that requests information stored at a server.
 When you click a hyperlink in your browser, your computer becomes the client and requests the appropriate web page from the server that stores that page (web server).
 Once the web page is sent to you, the client-server interaction is complete. The server fulfills many brief requests from clients very rapidly.

URL Example

Here is an example URL:
http://people.ok.ubc.ca/rlawrenc/teaching/l22/index.html
http protocol server domain name location of file on server

Another example with an IP address:

Page 29

COSC 122 - Dr. Ramon Lawrence

Requesting a Web Page

A web page is requested by the user by either:
typing in a Universal Resource Locator (URL) into the web browser's address field OR
\bullet clicking on a hyperlink in a document that contains a URL
A request for a URL has three parts:
\bullet Protocol: http:// - Hypertext Transfer Protocol \Rightarrow Tells the computer how to handle the file
-Server computer's domain name or IP address
\bullet Page's path and file name: \Rightarrow Tells the server which file (page) is requested and where to find it.

File Structure

	A file structure is a method for organizing files on a computer.
	The common file structure is a hierarchy of directories or folders.
	Each folder has a name and can contain any number of files or subdirectories.
	Each file has a name.

Hypertext

The HTTP protocol can transmit any file type, not just
documents. However, it is most commonly used to transmit documents written in Hypertext Markup Language (HTML).

HTML describes the layout of a document including fonts, text style, image placement, and hypertext links.

Hypertext links provides a way to jump from point to point in documents (non-linear). Links may jump within a document, between documents on a server, and to documents on other servers.

We will see how to write HTML documents soon.

TCP/IP (Transmission Control Protocol/ Internet Protocol)

TCP/IP (Transmission Control Protocol/Internet Protocol) is the structure (language) and protocol used for communication between computers on the Internet.

This is how TCP/IP works:

- Information is broken into a sequence of small fixed-size units called IP packets.
Each packet has space for the unit of data, the source and destination IP addresses, and a sequence number.
-The packets are sent over the Internet one at a time using whatever route is available.
Because each packet can take a different route, congestion and service interruptions do not delay transmissions.
- Receiver re-assembles packets using sequence numbers ${ }_{\text {Page }} 31$

Practice Question Sending a Message Using TCP/IP

Using two small pieces of paper. Write on each paper:

- The destination row and seat \# of your receiver (IP address).
- Your sender row and seat \#. (IP address)
\bullet Row numbers start at 1 from the front of the class.
-Seat numbers start at 1 from the left and increase going right. Only count seats where people are sitting.
-The number 1 or 2 for the first or second piece of paper.
- The first part of a sentence on piece \#1 and second part on piece \#2.
- Example:

Src: Row 4 Seat 5 Dest: Row 6 Seat 3 Seq\#: 1 Src: Row 4 Seat 5 Dest: Row 6 Seat 3 Seq\#: 2

Practice Question
 Sending a Message Using TCP/IP (2)

Routing:

- The person at the left end of the row is your gateway to the Internet. They will be called the gateway router. All packets are sent to the gateway router even if the destination is in your row.
-When a gateway router receives a packet they will look at the destination address. If it is in their row, they will route it back down the row. If not, they will route it to an internal router.
- Several people are selected to be internal routers. They are responsible for some number of rows (e.g. 1 to 5). When they receive a message, and the destination is in their set of rows, they will give it to the gateway for that row. Otherwise, they will give it to the adjacent core router (up or down).
-When ready, send your message. (You may break it up).
When you get a message, reassemble. On the back of the paper, send a reply back to the sender. Page 37

TCP/IP
Question: Put the following steps in order to describe transmitting information on the Internet using TCP/IP. 1) put sequence \#, sender and destination IP addresses on packets 2) route packets through whatever route is available Lanrence 3) re-assemble packets using sequence numbers 4) break data into fixed-sized packets a) $1,2,3,4$ b) $4,2,3,1$ c) $4,1,2,3$ d) $4,2,3,1$

Aside: Where is the www?

Does a name have to contain www (e.g. www. yahoo. com)?

- If the server name contains www, then www would be the name of the computer in that domain.
- A computer can be a web server even if its name does not contain www.
Other Frequently Asked Questions (FAQs):
-1) Do I have to type www or can I just type yahoo. com?
\Rightarrow You can normally just type yahoo. com without the http and www, and the browser will fill it in for you. Note that the site still is www. yahoo.com
-2) What is http?
$\Rightarrow \mathrm{Http}$ stands for hypertext transfer protocol. It is the name of the protocol for sending web pages over the Internet. It is the use of the http protocol that makes a computer a web server.
-3) Are all computers on the Internet web servers? No.

Aside: The anatomy of an e-mail address

An e-mail address has a structure similar to a URL:

ramon. lawrence@ubc.ca \uparrow unique name of user on server (local-part)	server domain
name	

FAQ:

1) Why the @ symbol?
\Rightarrow At "@" symbol was used as a separator because it is not in the user or server name and naturally implies that user is associated with the server. \Rightarrow Developed by Ray Tomlinson in 1971.
-2) Are e-mail addresses case-sensitive?
\Rightarrow Domain names are not case-sensitive. Local user names are casesensitive, but most servers ignore case to avoid errors. Lower case characters are used for readability and by convention.

Page 42

Aside: What is a firewall?

A firewall is a network device that is installed on the edge of a network to prevent unauthorized network traffic from entering a local network.

- A firewall uses information in the packets (IP addresses, ports) to determine good traffic from bad traffic.
-Administrators can restrict access to certain sites or applications using a firewall.

A proxy server or gateway is a computer on the network that your computer must communicate through to get out onto the Internet.

Other Types of Networks WAN and LAN

The Internet is a "network of networks" as it connects independent networks together using a common protocol.

A Wide Area Network (WAN) is designed to send information between widely separated locations.

A Local Area Network (LAN) connects computers close enough to be linked by a single cable or wire pair.
Ethernet is the main technology for LAN.

Our campus has a WAN to connect all buildings together, and within each building is one or more LANs.

Page 44 transmitting a message" at roughly the same time. Try until everyone has sent the message.

nternet History	
-1960s: Packet switching developed	
1972: ARPAnet had 15 nodes and a host-to-host protocol. First public demo. Ray Tomlinson at BBN wrote e-mail program.	
-1974: Cerf and Kahn - TCP/IP (Turing Award)	
-1979: ARPAnet has 200 nodes	
-1982: SMTP e-mail protocol defined	
-1983: DNS defined for name-to-IP-address translation	
-1990: Internet has 100,000 nodes	
- 1991: World-Wide Web invented by Tim Berners-Lee of CERN. -1994: Mosaic (later Netscape) developed by Marc Andreesen.	
1995: ARPANet decommissioned. Replaced backbone by commercial Internet service providers.	

Internet Current

-1995-present: Tremendous growth in the number of users and applications. Common applications:
\Rightarrow Communications (text, voice, video) - email, Skype
\Rightarrow News/advertising/entertainment
\Rightarrow Massive Data Sets - Google Maps/Earth, scientific data, directories
\Rightarrow Social sites - MySpace, Facebook, LinkedIn
\Rightarrow E-commerce - Amazon, Walmart
\Rightarrow Search - Google, Yahoo, Bing
\Rightarrow Online gaming/social gaming
\Rightarrow Mobile access and smart phones - iPhone, Android, Blackberry

- Improved network bandwidth and reduction in cost has made these applications possible. Standardization is also important.
-Bandwidth and hardware is now a commodity (cloud computing)
- Easier than ever to build an Internet application.

COSC 122 - Dr. Ramon Lawrence

Impact of the Internet on Society

\bullet Nowhere is remote.

\Rightarrow A person in Kelowna has the same access to Internet information as someone in Toronto.

- People are interconnected.
\Rightarrow Can interact with people around the world.
-Social relationships are changing.
\Rightarrow We are spending more time online and doing less in-person activities.
- English is becoming a universal language
\Rightarrow The influence of American culture since World War II has led to rapid adoption of English as the default language for global commerce science and technology.
-Freedom of speech and assembly have expanded.
\Rightarrow The Internet is technically unmediated allowing freedom of expression (both positive and negative). Anyone can publish at almost no cost.
\Rightarrow Countries like China can restrict access to information on the Internet.

What is The Value of Information on the Internet?

Since anyone can publish a web page with information (fact or fiction), this introduces several important issues:

- Information overload - too much information which makes it difficult to find relevant information
- Information quality - the lack of independent editing creates an issue of trustworthiness and completeness
- Information organization - how is information organized so that it can be easily found and used

Measuring Information Quality

The quality of information can be measured in several ways:
-1) Investigating the source - Trusted sources with an online presence should have quality information.
\Rightarrow It is possible to look up the organization that publishes a web site using its domain name and the Whois facility
\Rightarrow Canada Whois: http://whois.cira.ca/public
2) Realistic site content - A site is more believable if it contains physical addresses, phone numbers and credentials, and if it appears current and professionally done.
3) Search engine ranking and external links - Although not fool proof, higher search engine rankings and links from other sites are an indication that others value the information on the site.

Page 51

COSC 122 - Dr. Ramon Lawrence

Aside: How to Search Effectively

Search engines allow basic keyword search and more advanced search features. Some things you should know:
-Search for a phrase by putting double quotes around it.
\Rightarrow e.g. "Computer Fluency" instead of Computer Fluency
-By default, there is a logical AND connecting terms. This means that all terms must appear in the document
\Rightarrow e.g. Computer Fluency means both Computer and Fluency must appear.

- You can also use OR to indicate either term is suitable:
\Rightarrow e.g. (Book OR Magazine) - parenthesis are optional
- You can use not to indicate work should not appear:
\Rightarrow e.g. not Fluency
- You can use plurals, but the search engine will normally discard them. (Called stemming) E.g. trees becomes tree
Question: What is a cached page in a search engine?

SC 122 - Dr. Ramon Lawrence

Aside: How does a search engine work?

All popular search engines such as Google and Bing have two basic parts:
-Crawler: Visits sites on the Internet, discovering Web pages and building an index to the Web's content.
\Rightarrow A search engine has crawlers running continuous to refresh and update its index database of web pages.
\Rightarrow When a crawler visits a page it identifies the terms on the page and then processes any outgoing links.
-Query processor. Looks up user-submitted keywords in the index and reports back which Web pages the crawler has found containing those words.
\Rightarrow The query processor does not search the Internet - it only returns answers previously found by the crawlers.
\Rightarrow The ranking algorithm to identify important pages is critical to success of the search engine. Google uses the PageRank algorithm.

Survey Essential Technology

Question: What technology could you absolutely not live without?
A) television
B) cell phone
C) social network sites
D) email/text messaging/chat
E) none of the above

Discussion
 Effect of Internet and IT on Society

In small groups, discuss what you think are the most important positive and negative effects of the Internet and computers on society.

- Are there issues that we have not covered?

Be prepared to give a short summary of your discussions.

Objectives

Compare and contrast: synchronous and asynchronous
-Compare and contrast: broadcast and point-to-point

- Identify what types of communication common devices use.
-List and define the 3 components of communication.
-Define: Internet
- Explain how you can get on the Internet.
- Explain the format and purpose of an IP address. IPv4 vs. IPv6.

Describe the hierarchical structure of a domain name.

- Explain the purpose and role of a DNS server.
- Explain the key features of the TCP/IP protocol.
-Define: client, server
Define: WWW, web page, web server, web browser
List and explain the components of a URL.

Conclusion

The Internet is an asynchronous, point-to-point communication tool. However, due to its speed, broadcast and synchronous applications are also supported.
The three components of any communication are a shared medium, a common language, and an agreed upon protocol.

An IP address is a unique address that identifies a computer on the Internet. Domain names are used as they are easier to remember, and are mapped to IP addresses by a DNS server
The World Wide Web allows for the storage, transmission, and display of information in documents called web pages.

The Internet and IT in general has made a significant impact on society and our daily lives.

Objectives (2)

\bullet Provide the unique feature of HTML documents compared to other documents.
-Define: file structure, file, directory
-Compare and contrast: WAN and LAN
-Provide an overview of the Ethernet protocol.

- List and discuss some of the impacts of the Internet and IT on society.
\bullet List 3 challenges with the vast amounts of information available on the Internet.
-Discuss how you can evaluate the quality of information found online.
List the two components of a search engine.

Key Points

1) Hypertext Markup Language (HTML) is the standard language for building web pages.
2) HTML is our first example of a language for communicating instructions to the computer.

Basic Formatting Tags

To put text in a paragraph use the <p> </p> tags:
<p>This is text in a paragraph.</p>

To make text bold use the tags: This text is bold.
To make text italic use the <i> </i> tags: <i>This text is in italics.</i>
To identify important text use the tags: This text is in strong format.
To emphasize text use the tags: This text is emphasized.

[^0]
HTML Formatting Example (2)

This is my paragraph. One sentence is bold. The other sentence is in italics.

This is an emphasized sentence. This is text formatted using the strong tag.

More Formatting Tags

You can apply more than one formatting at a time:
<p><i>This text is in bold and italics.</i></p>
There are 6 levels of heading defined <h1>, <h2>, .. <h6>. Each heading creates a new line and displays in a large font.
<h1>Largest heading</h1>
<h2>Next largest heading</h2>
<h6>Lowest level heading</h6>
Use <hr> to put a horizontal line in the document.
Use
 to put a line break.
\bullet Note that these last two do not have a closing tag.

Display vs. HTML Format

When displaying an HTML document, a web browser ignores white space. White space is considered spaces, tabs, and newlines. Multiple spaces and newlines are replaced with a single space when displayed (unless the <pre></pre> tags are used).

Since white space is ignored, it is advisable to make your HTML document easier to read and edit by inserting spaces and blank lines.

Remember the web browser uses the tags to determine how to display the document, not what it looks like in your editor!

Page 10

Special Symbols	
Since the < and > are special (reserved) symbols in the HTML language, we need a way to use them in our documents.	
The \& (ampersand) is the escape symbol that tells HTML a special character is required. Terminate with a; (semi-colon).	
Common characters:	
\&1t;	$<$
\>	é
\ñ	ñ
\& \	${ }_{\text {non-breaking space }}$
	Page 11

HTML Advanced Formatting Example (2)
HTML Practice Question

General Syntax Rules: Comments

Comments are used by the programmer to document and explain the code. Comments are ignored by the computer.

HTML comments use the syntax "<!--" for the start of the comment and "-->" for the end of the comment.

Example:
<!-- This is a HTML comment -->

<!-- This is a HTML comment
that crosses
multiple lines -->
HTML Tags
Question: Select one of the tags that do not have a matching closing tag. A) br B) $h 1$ C) hr D) p

HTML Tags - Reserved Symbols

Question: Which one of these symbols is not reserved?
A) $<$
B) ;
C) $>$
D)

Specifying A Hyperlink Location Absolute and Relative Paths

The location where the user goes to when clicking on the link may be given as a complete absolute URL:
Go to Yahoo!
or relative to the current location:
Go to Hello World in mydir

Use an absolute URL when the page is on a different server.
Use a relative path when the page is on the same machine. The path depends on the current page location
-Use ".." to navigate to the directory above your current location.
Analogy: If you give someone directions to the Science building, those directions will depend on where you start from!

COSC 122 - Dr. Ramon Lawrence

Absolute and Relative Paths Question

Given this maze, specify the location of the goal (G) both in absolute terms and relative based on start location (S).
Describe the path how you want.

Absolute and Relative Paths Question 2		
Given these files, specify the location of the file winter.jpg: - absolutely - relative to directory 122 (directory 122 is the start point) - relative to directory pics		

Including Pictures With Image Tags

Images can be shown in a document with the image tag:

Notes:

- src stands for source and is either an absolute or relative path to a picture file.
\bullet A picture may be in many different formats. Common formats: \Rightarrow GIF: Graphic Interchange Format
\Rightarrow JPEG: Joint Photographic Experts Group
\Rightarrow PNG: Portable Network Graphics
-The file extension (.gif, .jpg, .png) tells the browser which format the image is stored in.

Positioning the Image in the Document

By default, images are inserted in the page at the point where the tag is specified in the HTML, and the text lines up with the bottom of the image.

The align attribute can line up image with the top of the line of text or the bottom

Align left or right attribute puts the image on the side of the browser window and the text flows around it.

To put image on separate line, enclose within paragraph tags.

HTML Image and Link Example

<html>

<head><title>Images and Links in HTML</title></head>

<body>
<p>The image is placed in the text. \(\langle/ \mathrm{p}>\)
<p>This is
 Google's Image.</p>
<p> We have wrapped some text around this wonderful winter scene and resized it so that it is smaller than its original form.</p>
</body>
</html>
Page 27

Advanced: Images and Links Together

You can create a hyperlink on an image so when the user clicks on the image, they go to the desired location.

Example:

-This example shows an image retrieved from Google's web site and will go to the web site when the image is clicked

- Note that we could have sent the user to any site, not just the Google site where the image came from.

HTML Image and Link Example (2)

	Q\} \equiv

This is
Google's Image.
We have wrapped some text around this wonderful winter scene and resized it o that it is smaller than its original form.

bend
Page 28

Advanced: Specifying Color by Number

When a color is specified by a hexadecimal number it consists of three numbers from 0 to 255 representing the intensity of red, green, and blue respectively.
\bullet However, instead of using decimal numbers (base 10),
hexadecimal numbers are used (base 16) which have the digits 0 to 9 plus A (10), B (11), C (12), D (13), E (14), and F (15).
Examples:

Color	RGB Intensity	Hexadecimal
Black	$(0,0,0)$	\#000000
White	$(255,255,255)$	\#FFFFFF
Red	$(255,0,0)$	\#FF0000
Green	$(0,255,0)$	\#00FF00
Blue	$(0,0,255)$	\#0000FF
Orange	$(255,142,42)$	\#FF8E2A
Purple	$(147,112,219)$	\#9370DB
Yellow	$(255,255,0)$	\#FFFF00

HTML Image Practice Question

-The background is black. Image and link locations: \Rightarrow greenball.gif - relative path 4 directories up then in images directory $\Rightarrow C B C$ logo - http://www.cbc.ca/logo.gif \Rightarrow helloWorld link - helloWorld.html is in current directory \Rightarrow CBC link - http://www.cbc.ca

```
COSC 122 - Dr. Ramon Lawrence
```


HTML Anchor Tag

```
Question: Which one of these anchor tags is correct?
a) <a ref="Click Here">http://www.yahoo.com</a>
b) <a href="index.html">My Home Page</a>
c) <a src="http://www.yahoo.ca">Yahoo</a>
d) <a ref="http://www.google.ca" src="My Page">
```


HTML Image Tag

Question: Which one of these image tags is correct?
a)
b) picture.gif
c)
d)

Advanced Lists

You can nest lists inside each other to produce sublists:

```
<ul>
    <li>Item 1
        <ol>
            <li>Subitem 1.1</li>
            <li>Subitem 1.2</li>
        </ol>
    </li>
</ul>
```

Another type of list is the definitional list:
$\bullet<d l>$ and </dl> tags begin and end the list
\lldt> and </dt> surround the terms to be defined
$\bullet\langle d d>$ and $</ d d>$ surround the definitions

Tables in HTML

Data can be displayed in tables using the <table></table> tags. Rows are enclosed in table row <tr></tr> tags, and each cell is denoted using table data <td></td> tags.

A table may have a caption centered at the top of the table by using the <caption></caption> tags.

A header row may be created using the <th></th> tags.

HTML Table Example (2)

蜀Totcinhmm \times		
		Q
This is my table caption.		
Tag	Purpose	
TABLE	Start and end entire table	
TR	Start and end each row	
TH	Special column header formatting	
TD	Start and end each data cell	
COLSPAN allows a cell to span multiple columns.		
ROWSPAN	ROWSPAN allows a column to span multiple rows.	
	This is a ROWSPAN example.	
Tables can be nested.	Nested table	
	Row 2	
		Page 40

Where can I use HTML?

HTML is everywhere on the Internet: UBC Connect, Facebook, Yahoo, Google, etc.

All your most popular websites have HTML as a base (and maybe other languages on top of them.)

You can see the HTML source for any page in a browser by selecting View->Page Source in Firefox/Chrome or View>Source in Internet Explorer.

HTML Practice Question

Advanced: Cascading Style Sheets

Cascading style sheets (CSS) is a language for controlling the appearance of web pages, especially color, layout, and fonts. How it works:

- In a CSS source, you define the markup tag and its formatting.
- When that tag is used in your HTML page, the formatting is automatically applied. This makes changes easier!

Example:

<html><head><title>Using Css</title></head>
<style type="text/css">
body f font-family: "Times New Roman"; color: purple; \}
h1 \{ font-family: Helvetica; color: green; \}
</style>
<body>
<h1>Formatted heading</h1>
<p>Regular text</p>
</body></html>

Cosc 122 - Dr. Ramon Lawrence

\section*{Advanced: Three Types of Selectors}

By element - Apply to all instances of a particular element:
```
h1 { font-family: Helvetica; color: red;}
```

Use:
<h1>This will be red</h1>
By id - Apply to all content with a specific id:
\#section \(\{\) text-align: left; background-color: blue; \}
Use:
<div id="section"><h1>Heading</h1><p>Text..</p></div>
By class - Apply to specified instances of any tag:
h1 \{ color: green; \}
h1.red \{ color: red; \}
Use:
<h1>This will be in green</h1> <h1 class="red">Red</h1>Page 45

\section*{COSC 122 - Dr. Ramon Lawrence}

\section*{Conclusion}

Hypertext Markup Language (HTML) is a language for describing how a web page should appear in a web browser.

We have seen how we can use markup tags of HTML to:
-change fonts and formatting
- add images and hyperlinks
-create lists and tables

HTML is our first example of a language to instruct the computer on what to do.

\section*{HTML List Tag}

Question: Which one of these HTML code fragments will produce a list like below?
a)
2. Item 2
Item 1
Item 2

\[
\text { 1. Item } 1
\]
c)
<il>Item 1</il>
<il>Item 2</il>
b)
d)
Item 1
Item 2

Item 1
Item 2

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{HTML Table Tag} \\
\hline \multicolumn{4}{|l|}{Question: Which one of these HTML code fragments will} \\
\hline produce a table like this? & Heading 1 & Heading 2 & \\
\hline & Val1 & Val2 & \\
\hline ```
a)<table border="1">
 <tr><th>Heading 1<
 <tr><td>Val1</td><
 </table>
``` & \[
\begin{aligned}
& </ \mathrm{th}><\mathrm{t} \\
& <\mathrm{td}>\mathrm{Val}
\end{aligned}
\] & h \(>\) Head
\(2</\) td & \[
</ \operatorname{tr}>
\] \\
\hline ```
b)<table border="2">
    <tr><td>Heading 1
<tr><dt>Val1</dt><
</table>
``` & \begin{tabular}{l}
\(</ t d><t\) \\
\(<\mathrm{dt}>\mathrm{Va}\)
\end{tabular} & d>Hea \(2</ d t\) & \[
\begin{aligned}
& </ \text { tr }> \\
& \text { Page } 49
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Computers are Dumb... so We Must be Precise}

Computers have no knowledge or intelligence unless they are programmed with it.

When talking with people, we assume knowledge and the ability to reason out errors or missing details when communicating.

Computers hate imprecision and cannot handle it by default.
-Programmers often write applications to detect simple, common imprecise statements and fix them (but not always).

\section*{Debugging: What's the Problem?}

Debugging is the process of determining why a system does not work properly.

We perform debugging all the time in daily life, usually to fix problems with other systems and tools we interact with (cars, lights, appliances, electronics, our own bodies, etc.).

Debugging is a little different with computers and information technology because usually it is not a component failure that is the source of the problem. More commonly, it is our interaction and limited understanding of how the computer works.

\section*{Key Points}
1) Debugging is the act of finding and correcting errors in a system.
2) All users need to know the general debugging steps due to the complexity of computer systems.
3) A common reason for computer errors is our lack of precision in specifying instructions to the computer.

\section*{Entering Data into Forms}

Data is typically entered into a computer using a form.

A programmer can restrict the types and number of symbols that can go into a form field.
\(\bullet\) e.g. only allow numbers in a phone number field
Many errors occur when users either enter data that does not follow these restrictions, or they enter incorrect data that is accepted by the computer because it is not properly checked.

Question: Have you ever entered false data into a form?

\section*{Whose Problem Is It?}

When we debug an information system, we are always part of the problem!
-We give the commands and the input, so the only other possible cause is a broken system.
People do not knowingly make errors, but we frequently do if we do not understand how to use a system properly.
\(\bullet\) We must be precise and know what the computer expects. Debugging is challenging as a computer user because:
-the computer cannot debug itself
- we cannot debug it directly either because the error is internal to the computer
Debugging involves working with the computer to try and understand what is happening and why.

COSC 122 - Dr. Ramon Lawrence

\section*{Debugging: Solving a Mystery}

Debugging is very similar to solving a mystery.

To discover and solve the problem we ask questions like:
-Do I need more clues?
-Are my clues reliable?
-What is a theory to explain the problem?
-How can I test if my theory is correct?

Like solving mysteries, the only way to get good at debugging is practice and gaining experience about common problems and solutions.

\section*{Debugging HTML Web pages}

How to debug HTML web pages according to the 4 steps
-1) Reproduce errors - This is easy. Every time you reload or refresh the page, you should see the same errors.
2) Do not jump to conclusions - Although there are bugs in web browsers, it is vastly more likely that the HTML document contains errors. Focus your attention there.
-3) Obvious sources of errors - One "obvious" source of errors is non-matching open and closed tags. As you gain experience, more errors become obvious.
-4) Isolate the problem - An HTML document is processed starting at the beginning, so try to fix errors at the start of the document first then work down.

\section*{Aside: The Cost of Debugging}

When developing a computer system or application, the process of testing and debugging is extremely costly.

Most software requires 40\% of the total time, cost, and effort to debug and fix problems in the system.
-Even so, many errors go unnoticed until the system is used.

To make software development more efficient and less costly, software engineering principles and techniques are followed.
\(\bullet\) Although building software is harder than building a bridge due to its complexity, software engineers continually strive to make software development better.
The Four Key Steps in Debugging
1) Check that the error is reproducible.
to reproduce the error.
2) Do not jump to conclusions.
The actual cause of the error may be many steps removed from
the visible symptoms. Ramon Lawrence
3) Check all the "obvious" sources of error.
4) Isou would be surprised how often a cable is not plugged in...
The goal is to make good assumptions and divisions of parts that
you know are working and others that need investigation.
Be careful! It is often parts (including yourself) that you assume
are working that really are not.
\& Make sure assumptions are backed up by tests.

\section*{Common HTML Errors}

Some common HTML errors:
\(\bullet\) Open with no matching close tag
\(\Rightarrow<a\) href="test.html">...
\(\rightarrow\) Non-matching quotes
\(\Rightarrow\) (no closing quote)
\(\Rightarrow<\) img src="myimage.gif'/> (open with ", close with')
\(\Rightarrow<i m g\) src="myimage.gif"/>
(HTML does not like smart quotes)
\(\bullet\) Missing attribute or incorrect attribute name.
\(\bullet\) Incorrect tag name (which may result in non-matching tags).
- Incorrect file name or hyperlink address.
-Forgot required tags like <html>, <head>, <body>.
\(\bullet\) Forget to stop escape sequence with a semi-colon \(\Rightarrow\) e.g. \< (missing semi-colon should be \<)

\section*{Aside: The First Bug}

The first "bug" in a computer system was actually a moth found in the Harvard Mark II computer system in 1947 by Rear Admiral Grace Hopper.

Determining what a program does and finding any errors follows the scientific method.
1) Model - create a hypothesis on what the program does
2) Predict - for inputs not yet tried / simulated
3) Experiment - run the program to check your prediction
4) Refine - modify your hypothesis based on experimental results and repeat.

Understanding software is in many ways similar to understanding how complex real-world processes work.

\section*{HTML Debugging Question HTML Document (2)}
<p>Tables are also <b style="font-size:150\%; color:redd">tricky.</p>
<table border=2 style="background-color:yellow"> <caption>Common table errors</caption>
<tr><th>Error Type</th><td>Description</td></tr>
<tr><td>No closing \<TD\> or <TR> tag</td><td>Table
appearance gets messed up</td></tr>
<tr><td>COLSPAN/ROWSPAN</td><td>Hard to track down</td></tr>
<tr><table style="background-color:orange">
<tr><td colspan=2><td>Nested tables</td>
<td>Use colors to help solve nested table issues.</td></tr>
</table></td></tr></table>
</table>
</body>
</html>
HTML Debugging Question Desired Output

COSC 122 - Dr. Ramon Lawrenc

HTML Debugging Question Actual Output

HTML Debugging Question HTML Document

<html>

<head><tile>HTML Debug Question</title></head>
<p>Let us try find some bugs in HTML. It is <i>easy to find
bugs; if you know where to look. However, sometimes it is
just not obvious.</p>
Here is a list of things I watch for:

Non-matching tags
Incorrect tag names
Bold (B) and italics (I). \(</ l i>\)
Make sure you use A not AHREF.
Missing or non-matched quotes
Be careful with references

Make sure images have correct path and name Page 16

COSC 122 - Dr. Ramon Lawrence
\(\qquad\)

\section*{Conclusion}

Debugging is a systematic approach to discover and fix errors in a system.
-Debugging a computer system requires working with the computer to diagnose the problem with the realization that we are often the cause of the problem.
The four key steps of debugging are:
1) Check that the error is reproducible.
2) Make sure you know what the problem is.
3) Check all the "obvious" sources of error.
4) Isolate the problem

As users, we can resolve many errors with a little practice, experience, and patience without requiring help from IT service technicians.
Objectives
Give some examples of imprecise communication.
Explain why precision is important for a computer.
Lefine: debugging
List and explain the 4 key steps of debugging.
List remember) some common HTML errors.
Be prepared to demon Lawernce
and on paper.

\begin{tabular}{l}
Survey \\
C/aSS Sti// EaSY? \\
\hline Question: HONESTLY, rate the course difficulty so far from 1 \\
(easy) to 5 (difficult). \\
A) easy \\
B) below normal \\
C) normal \\
D) above Ramon Lawrence \\
E) difficult
\end{tabular}

\section*{Survey}

\section*{Stil Easy?}
(easy) to 5 (difficult).
A) easy
B) below normal
) norma
E) difficult

\section*{Everything is digital - Is that good?}

Almost all of our music, movies, data, and pictures are digital.
\(\bullet\) Most people believe digital is better. What does digital mean?

Representing something digitally means to store the data in discrete units. A unit is discrete if it is distinct or separate from other units. The smallest unit of data depends on what we are representing.

Digital differs from analog where the information is encoded on a continuous signal (spectrum of values)
- Note that sound and images are analog by nature.

\section*{Survey \\ Reading the Notes}

Question: HONESTLY, how often do you read the notes before class?
A) never
B) up to \(25 \%\) of the time
C) up to \(50 \%\) of the time
D) all the time
E) This class has notes?

\section*{Key Points}
1) Representing data digitally means to represent it using discrete units.
2) The lowest level of data representation on a computer is a single bit that represents either 0 or 1.
3) Bits are combined to allow more information to be represented including characters and numbers.
4) More complex information like documents, spreadsheets, and databases (all of which we will see later) are simply compositions and higher-level abstractions of bits.

\section*{Analog versus Digital Thermometer Example}

\section*{Digitizing Discrete Information Phone Numbers}

A simple example of digital data is a phone number. A phone number consists of multiple units of information called digits (the numbers 0 through 9).

Although numbers are used to represent the values of different digits, it is possible to use any collection of 10 distinct symbols to represent the 10 possible different values.

However, using numbers is nice because they have a natural ordering (\(0<1<2<3<\ldots<9\)).

\section*{Why are electronics digital?}
1) Computers are digital and many home electronics are interfacing with computers.
2) Analog signals are more susceptible to noise that degrades the quality of the signal (sound, picture, etc.). The effect of noise also makes it difficult to preserve the quality of analog signals across long distances.
3) Reading data stored in analog format is susceptible to data loss and noise. Copying analog data leads to declining quality.

\section*{Digitizing Discrete Information} Phone Numbers

Question: Represent the phone number 254-123-6789 using both alternative digitization methods.

\section*{Encoding Information with Dice}

We will see how much information we can encode using sixsided dice.

Quick question: If a dice has six unique sides, how many different values/states can it encode?

Answer: 6
By using more dice, we can encode more data:
1 die \(=6\) states
2 dice \(=6 \times 6=36\) states
3 dice \(=6 \times 6 \times 6=216\) states
N dice \(=6^{\mathrm{N}}\) states

\section*{Encoding Information with Dice (3)}

The extra 10 states could be used to encode numbers. However, what if we need to encode other symbols as well?

One solution is to use 3 dice per symbol which gives us 216 possible symbols.

Another way is to have one special symbol be an escape character. It does not match any legal character, so it will never be needed for normal text digitization. An escape character indicates that the digitization is "escaping from the basic representation" and applying a secondary representation.

Question: What escape character have we already seen and in what context?

\section*{Encoding Information with Dice (6)}

We will use the escape and two dice to represent numbers:
1: 2 :
3:
4:
L:
Question: How would we encode the number 198 in this notation?
\begin{tabular}{|lllllllll}
\hline Representing Data using Dice \\
\hline Question: Using the dice encoding, what is this: \\
\hline
\end{tabular}

\section*{Aside: The Time versus Space Tradeoff}

A fundamental challenge in computer science is encoding information efficiently both in terms of space and time.
-We just saw an example where we could save space (only need 2 dice instead of 3) by using the escape symbol.
At all granularities (sizes) of data representation, we want to use as little space (memory) as possible. However, saving space often makes it harder to figure out what the data means (think of compression or abbreviations). In computer terms, the data takes longer to process.

The time versus space tradeoff implies that we can often get a faster execution time if we use more memory (space). Thus, we must strive for a balance between time and space.
\begin{tabular}{l}
Representing Binary Data \\
\hline \begin{tabular}{l}
Data is information before it has been given any context, \\
structure and meaning. \\
Binary data has two states and is represented in a computer \\
using a bit. A bit can either be 0 or 1 . \\
The word bit is short for "binary digit". \\
A compamon Lawerence \\
an almost limitless number of possible states. \\
\end{tabular} \\
\end{tabular}

\section*{What is a Byte?}

A byte is a sequence of 8 bits.

Historical note: Byte is spelled with a "y" because engineers at IBM were looking for a word for a quantity of memory between a bit and a word (usually 32 bits). Bite seemed appropriate, but they changed the " i " to a " y ", to minimize typing errors.

\section*{Aside: Adding Binary Numbers}

Just like regular addition, we can add binary numbers. The rules are the same:
-Work from right to left, adding corresponding digits in each place position.
- If adding the two digits is bigger than the maximum digit value (9 in base 10 and 1 in base 2), we carry to the next position.

Example:

\section*{11}
(carries)
100010111
\(+01100110\)
11111101
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Decimal to Binary to Hex Conversion Table} \\
\hline \(\frac{\text { Decimal }}{}\) & \(\frac{\text { Binary }}{0000}\) & Hexadecimal & \\
\hline 1 & 0001 & 1 & \\
\hline 2 & 0010 & 2 & \\
\hline 3 & 0011 & 3 & \\
\hline & 0100 & & \\
\hline 5 & 0101 & & \\
\hline 7 & 0110 & \({ }^{6}\) & \\
\hline 7 & 0111
1000 & 7 & \\
\hline 9 & 1001 & 9 & \\
\hline 10 & 1010 & A & \\
\hline 11 & 1011 & \({ }_{\text {B }}\) & \\
\hline \({ }_{13}^{12}\) & 1101 & \({ }_{\text {c }}\) & \\
\hline 14 & 1110 & E & \\
\hline & 1111 & F & Page 25 \\
\hline
\end{tabular}

\section*{Review Binary to Decimal}

Question: Convert this binary number to decimal: 01001111.
A) 143
B) 78
C) 79
D) 47
\begin{tabular}{|l|}
\hline Review \\
Decimal to Binary \\
\hline
\end{tabular}

Question: Convert this decimal number to binary: 123.
A) 1011011
B) 1111011
C) 11111011
D) 1110011

\section*{Review Binary to Hexadecimal}

Question: Convert this binary number to hexadecimal
\[
01111000111111101001
\]
A) 78 ACD
B) 58 FED
C) 78 FE 9
D) 78 FFD
\begin{tabular}{|l}
\hline Review Questions \\
Decimal to Binary to Hexidecimal \\
\hline \hline 1) Convert 163 (decimal) to binary and hexadecimal. \\
2) Covert 10101010 to decimal and hexadecimal. \\
3) Convert EF (hexadecimal) to binary and decimal. \\
\\
\end{tabular}

\section*{Representing Characters using Bits}

In total, there are 95 basic character symbols which would require 7 bits to encode.
-26 uppercase and 26 lowercase Roman letters, 10 Arabic numerals, 10 arithmetic characters, 20 punctuation characters, and 3 non-printable characters (tab, backspace, new line).

The standard 7-bit code for characters is called ASCII
(American Standard Code for Information Interchange).
-Later, the ASCII code was extended (extended ASCII) to 8 bits to handle additional characters.
Just like the dice encoding, each 8-bit sequence maps to a particular character. We use an ASCII table to determine what each bit sequence means

\section*{Representing Data in Memory Integers}

A integer is a whole number. It is encoded in a computer using a fix sized number of bits (usually 32).
- The first bit is a sign bit (\(0=\) positive, \(1=\) negative).
- Negative numbers are represented in two's complement notation. The "largest" bit pattern FFFFFFFF is -1 .
Example: \(123,456,789\) as a 32 -bit integer:

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Representing Data in Memory Doubles (2)} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
The number \(55,125.17\) stored as 4 consecutive bytes is: \\
\(\rightarrow\) Hexadecimal value is: \(4757552 B\) Stored value is: 55125.168
\end{tabular}} \\
\hline \multicolumn{5}{|c|}{} \\
\hline \multicolumn{5}{|l|}{-Divided into bytes looks like this:} \\
\hline \multirow[t]{2}{*}{Memory Address} & & 0002 & 0003 & 0004 \\
\hline & 01000111 & 01010111 & 01010101 & 00101011 \\
\hline
\end{tabular}

\section*{Representing Text Beyond ASCII - Unicode}

Although ASCII is suitable for English text, many world languages, including Chinese, require a larger number of symbols to represent their basic alphabet.

The Unicode standard uses patterns of 16-bits (2 bytes) to represent the major symbols used in all languages.
-First 256 characters exactly the same as ASCII.
- Maximum \# of symbols: 65,536.

\section*{Representing Data in Memory Doubles and Floats}

A number with a decimal may be either stored as a double or float value. On 32-bit machines, a double is usually 8 bytes long \(\Rightarrow\) A float is normally half the size of a double value and has less precision.

Double values are stored using a mantissa and an exponent:
\(\bullet\) Represent numbers in scientific format: \(N=m * 2^{e}\) \(\Rightarrow m\) - mantissa, e - exponent, 2 - radix
\(\Rightarrow\) Note that converting from base 10 to base 2 is not always precise, since real numbers cannot be represented precisely in a fixed number of bits.
- There are many standards for representing numbers in a fixed number of bits. The most common is IEEE 754 Format:
\(\Rightarrow 32\) bits - 1 -bit sign; 8 -bit exponent; 23 -bit mantissa \(\Rightarrow 64\) bits - 1 -bit sign; 11-bit exponent; 52 -bit mantissa

\section*{Aside: Can you really get rich by stealing fractions of a penny?}

Have you ever seen a movie (e.g. Office Space) where the plot was to steal fractions of a penny lost due to rounding?
Can that really happen?
-Called salami slicing as stealing money in very small quantities by always rounding down fractions of a penny.

Consider the salary in the previous example: \(\$ 55,125.17\) that had an actual value of \(55,125.168\) where stored in the computer.
-That imprecision can be serious when we are talking about millions of numbers and operations.
\(\bullet\) Idea: Round down to 55,125.16 and take the extra penny
Good code would not store monetary values as doubles
because they are imprecise or make sure to round appropriately.

\section*{Representing Data in Memory Strings from Characters}

A string is a sequence of characters allocated in consecutive memory bytes.

The first character of the string is at the first location of memory. The last character can be known by either:
- Null-terminated string - last byte value is 0 to indicate end of string.
-Byte-length string - length of string in bytes is specified (usually in the first few bytes before string starts).

\section*{Representing Data in Memory} Dates

A date value can be represented in multiple ways:
\(\bullet\) Integer representation - number of days past since a given date \(\Rightarrow\) Example: \# days since Jan 1, 1900
-String representation - represent a date's components (year, month, day) as individual characters of a string
\(\Rightarrow\) Example: YYYYMMDD or YYYYDDD
\(\Rightarrow\) Please do not reinvent Y 2 K by using YYMMDD!!
A time value can also be represented in similar ways:
- Integer representation - number of seconds since a given time \(\Rightarrow\) Example: \# of seconds since midnight
String representation - hours, minutes, seconds, fractions \(\Rightarrow\) Example: HHMMSSFF

\section*{Encoding an HTML Document}
```
    Here is our first HTML document:
<HTML><HEAD><TITLE>Hello World using HTML</TITLE></HEAD>
<BODY>
<P>Hello world!</P>
</BODY></HTML>
Here is its hexadecimal encoding:
3C 48 54 4D 4C 3E 3C 48 45 41 44 3E 3C 54 49 54 4C 45 3E
48
54 4D 4C 3C 2F 54 49 54 4C 45 3E 3C 2F 48 45 41 44 3E 0A
3C 42 4F 44 59 3E 0A 3C 50 3E 48 65 6C 6C 6F 20 77 6F 72
6C 64 21 3C 2F 50 3E 0A 3C 2F 42 4F 44 59 3E 3C 2F 48 54
4D 4C 3E
Some key hex digits: 3C="<" 3E=">" 20= space 2F="/" 0A = new line

\section*{Aside: Encoding Data on CDs and DVDs}

How the present and absent states of bits are encoded depends on the medium on which the information is stored. A CD consists of several different material layers. In one of those layers, indentations (or pits) are created. Areas between pits are called lands. The transition between a pit to a land represents 1 and no change represents 0 .

-DVDs store more information as they have smaller pit sizes and more tracks (smaller distance between tracks).

\section*{Aside: How do CD-R and CD-RW work?}

The medium for encoding is different for CD-R and CD-RW.
-CD-R/DVD-R - use photosensitive dye and are initially "blank". The write-laser of a CD writer changes the color of the dye at desired locations to make the CD appear to have pits and lands.
\(\Rightarrow\) Note that the dye will fade over time causing read errors.

CD-RW/DVD-RW - are re-recordable by using a metallic alloy that has its reflectivity changed by the heat of the write laser.
\(\Rightarrow\) There is not as great a difference in lands and pits with CD-RW, hence they sometimes are not readable by all players.


\section*{Conclusion}

The ability to represent information is fundamental to the functions of a computer system.

There are multiple ways to represent information, the most basic of which is the presence and absence of information. A bit, which has the values 0 or 1 , are used in computers.

Sequences of bits are combined to represent characters, numbers, and other data items. Larger data items are produced by combining these basic units.

Bits are just data until the necessary context is provided. There may be multiple levels of context (abstraction) needed to understand the meaning of a bit sequence.


\section*{NATO Broadcast Alphabet}

The code for broadcast communication is purposefully inefficient, to be distinctive when spoken amid noise.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{NATO Broadcast Alphabet} \\
\hline \multicolumn{6}{|l|}{The code for broadcast communication is purposefully inefficient, to be distinctive when spoken amid noise.} \\
\hline A & Alpha & J & Juliet & S & Sierra \\
\hline B & Bravo & K & Kilo & T & Tango \\
\hline C & Charlie & L & Lima & U & Uniform \\
\hline D & Delta & M & Mike & V & Victor \\
\hline E & Echo & N & November & W & Whiskey \\
\hline F & Foxtrot & O & Oscar & X & X-ray \\
\hline G & Golf & P & Papa & Y & Yankee \\
\hline H & Hotel & Q & Quebec & Z & Zulu \\
\hline I & India & R & Romeo & & \\
\hline \multicolumn{6}{|l|}{Question: Pick a partner. Pretend to be a pilot and broadcast your name to your partner using the NATO broadcast alphabet.} \\
\hline
\end{tabular}

Question: Pick a partner. Pretend to be a pilot and broadcast your name to your partner using the NATO broadcast alphabet.

\section*{Objectives}
-Compare and contrast: digital versus analog
- Give one reason why electronics are increasing digital.
- Explain how we can encode states and characters using dice.
- Explain the usefulness of the escape symbol.

Define: data, bit, byte, word
-Convert from decimal to binary and binary to decimal.
- Convert from binary to hexadecimal and hexadecimal to binary.

Explain why ASCII table is required for character encoding.
- Convert characters to binary using ASCII table.
-Briefly explain how integers, doubles, and strings are encoded.
\(\bullet\) Encode using the NATO broadcast alphabet.
Explain why context and interpretation produces information from data.


\section*{Key Points}
1) The standard computer (von Neumann) architecture consists of a central processing unit (CPU) and memory that stores both instructions and data.
2) Understand the Fetch/Execute cycle performed by the CPU.

\section*{What Computers Can and Cannot Do}

Computers can only deterministically perform or execute instructions to process information. The computer must have instructions to follow.

A computer has no imagination, intuition, or emotions. It has no intelligence, free will, or its own purpose.

We must specify precisely what the computer should do in the form of instructions and the associated data. We will see how a computer processes our instructions.
A computer is useful not because it is "smart" but because it can do simple operations very quickly.
\(\bullet A C P U\) at 1 GHz can perform about 1 billion operations/second.
Page 3

\begin{tabular}{|l|l|}
\hline Computer Instructions \\
\hline \begin{tabular}{l} 
The CPU has hardwired only a very few basic operations or \\
instructions that it can perform: \\
read a memory location into a register \\
write a register value to a memory location \\
add, subtract, multiply, divide values stored in regison Lawencec \\
shift bits left or right in a register \\
test if a bit is zero or non-zero and jump to new set of \\
instructions based on the outcome \\
sense signals from input/output devices \\
All programs are composed of these basic operations. \\
\end{tabular} \\
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{COSC 122 - Dr. Ramon Lawren} \\
\hline \multicolumn{2}{|l|}{The computer performs the following cycle of operations to process instructions:} \\
\hline - Instruction Fetch (IF) & - retrieve instruction from memory \\
\hline - Instruction Decode (ID) & - lookup meaning of instruction \\
\hline -Data Fetch (DF) & - fetch data for instruction \\
\hline - Instruction Execution & - execute instruction \\
\hline -Result Return (RR) & - return result to register \\
\hline \multicolumn{2}{|l|}{A special register called the program counter (PC) stores the address of the next instruction to execute.} \\
\hline \multicolumn{2}{|l|}{- Since each instructor is 4 bytes long, the PC is incremented by 4 every time an instruction is executed unless a branch is performed.} \\
\hline & Page 8 \\
\hline
\end{tabular}





Example:
Executing Move Instruction - Execute


No data fetch (performed during execute).
Instruction execution: Fetch memory location 28 and put in R2
No result return.
Page 14

\section*{Example:}

Add Instruction Execution

```
Instruction: \(\quad \mathrm{ADD}\) R1, R2, R3
```

Page 16

\section*{Example:}

Add Instruction Execution - Decode


\footnotetext{
Decode instruction to determine it is an add. Set param1 to R1 (register 1),
param2 to R2 (register 2), and param3 to R3 (register 3).
Prepare ALU to receive command and inputs.
Page 18
}


No data must be fetched from memory. Nothing to do in this step.

Example:
Add Instruction Execution - Execute


Execute instruction by passing operation and parameters to ALU.
Assume ALU knows operation is an ADD.
ALU executes the add (which may take some time) and result is in output. Page 20

\section*{Question:}

Instruction Execution


Question: Encode the instruction to put the data in register 3 into memory
address 40. Instruction goes in address 12
Explain how this instruction gets executed.
Page 22
\begin{tabular}{|l|}
\hline CPU \\
\hline Question: Which of these is NOT a component of the CPU? \\
A) control unit \\
B) arithmetic logic unit \\
C) bus \\
D) registers \\
\\
\hline
\end{tabular}

\section*{How many fetch/execute cycle steps?}


How many of the 5 fetch/execute steps are performed when xeculing the statement at memory address 8 ?
\[
\begin{array}{lllll}
\text { a) } 1 & \text { b) } 2 & \text { c) } 3 & \text { d) } 4 & \text { e) } 5
\end{array}
\]

Cosc 122 - Dr. Ramon Lawrence
Instruction Execution Result


Question: What is the value of R2 after executing the statement at location 8 ? \(\begin{array}{lllll}\text { A) } 0 & \text { B) } 111 & \text { C) } 12345678 & \text { D) } 12345789 & \text { E) None of the above }\end{array}\)

Page 26

\section*{Challenge Question: Writing a Simple Program}

Write a simple program that computes the following: - result \(=(A+B){ }^{*} C\)
- Assume \(A\) is at location \(52, B\) is at \(56, C\) is at 60 .

Let \(A=5, B=2, C=10\) then the result should be 70 .
-Store result at location 64
- Your program instructions should begin at address 0 .

Be prepared to explain how the program works when executed.

HINT: You will need 6 instructions ( 3 GET, 1 ADD, 1 MULTIPLY, 1 PUT). Use the " "" to denote a multiply expression.

\section*{Higher-Level Programming}

Higher-level programming languages (such as HTML and JavaScript) are more powerful and easier to use because they have more powerful features and functions.
-The programmer does not have to specify all the details at a lowlevel and can use more general commands.
- Note that this is another form of abstraction.

Every language for communicating instructions to the computer must ultimately be translated to machine language for execution.
\(\bullet\) The tools that translate to machine language are called compilers. Compilers verify that code has correct syntax before performing the translation.

\section*{Assembly and Machine Programming}

The previous examples are similar to assembly programming.

Machine programming involves specifying commands directly in binary form. Assembly language is a slightly higher level of commands which look more like English commands (MOVE, ADD) that are then translated to machine language before execution.

Most programmers do not write code in assembly or machine language because it is too low-level and time-consuming.

\section*{Branch and Jump Instructions}

One type of instruction that is available in all languages is called a branch or jump instruction.

A branch instruction allows the program to execute different parts of code depending on certain conditions. Example:

> IF hungry THEN eat something ELSE
> go work

A branch instruction is implemented by making a decision whether or not to branch (usually a comparison) then setting the program counter to the address of the next instruction.

\section*{Computer Speed}

The speed that a computer can execute a program depends on many things:
- the speed of the CPU
the speed of the bus, memory, and other devices
\(\bullet\) the type of program and its characteristics
-the amount of parallelism and pipelining in the CPU

Historical example:
Apollo Guidance Computer had 2.048 MHz processor, 32KB of RAM, 4KB of ROM, and 8 16-bit registers.

\section*{Aside: Advanced Processor Issues}

Our explanation of how a processor works is a high-level abstraction of how they work in practice.
Processors may have multiple dedicated hardware, complex pipelining features, cache memory, and other optimizations.

Some other terminology:
\(\bullet\) dual/quad core - means that there are two/four processing units on the same chip. The units may share subcomponents.
-dual processor - means that there are two separate processing units on different chips. Each processor appears distinct to the operating system.
-32-bit or 64-bit - describes the size of the basic memory unit and is also related to the bus size.

\section*{Computer Speed in GHz}

The most basic measurement is the speed of the CPU clock because it is a rough estimate of the number of instructions that can be executed per second.

CPU speed is measured in hertz or cycles per second. The clock of typical CPUs perform billions (giga-) cycles per second, so the measurement is in giga-hertz ( GHz ).
- A computer with a 2 GHz CPU has the potential for executing 2 billion instructions per second.

Note that measuring computer performance simply on clock speed has been used as a marketing tool. As computers have become faster and more complex, CPU clock speed in GHz is not the best measurement

\section*{Operating Systems}

An operating system is software written to perform the basic operations that are necessary for the effective use of the computer that are not built into the hardware.

Three most widely used Operating Systems:
- Microsoft Windows
- Apple's Mac OS X
-Linux/Unix

The operating system performs booting, memory management, device management, Internet connection, file management, and provides a platform for the execution and development of programs.

\section*{Computers and Electricity}

Computer components consist of gates and circuits that control the flow of electricity.

A gate is a device that performs a basic operation on electrical signals.
-Common gates: AND, OR, NOT, XOR

A circuit is a combination of gates that performs a more complicated task.

\section*{Constructing Gates using Transistors}

A transistor may either conduct or block flow of electricity based on input voltage (functions like a switch).
\(\bullet\) Made of semiconductor material such as silicon.
An integrated circuit is contains both transistors and wires that connect them. manufactured during same process.
- Invented by Jack Kilby and others at Texas Instruments in 1958. They received the Nobel Prize in Physics in 2000
-First integrated circuit:


\section*{Objectives}

Describe the von Neumann architecture (computer anatomy). Draw the diagram, and list and explain its main components.

Explain the organization of memory in terms of locations and addresses.
-Define and list examples of: input/output device, peripheral
-List and explain the three major components of the CPU.
-Advanced: Explain the key feature of the von Neumann architecture.

List some of the basic CPU instructions.
List and explain the five steps of the fetch/execute cycle.
- Explain the purpose of the program counter register.
-Advanced: Explain how instruction decoding works and be able to decode an instruction using our format.


\section*{Key Points \\ 磪}
1) There are five essential properties for algorithms.
2) The five basic steps of development are a general approach for solving problems using a computer.
COSC 122- Dr. Ramon Lawrence
\(\qquad\)
\(\square\) COSC 122 - Dr. Ramon Lawrence

\section*{Algorithm}

An algorithm is a precise, systematic method for producing a specified result.

We use algorithms all the time to complete tasks.

A common example is following assembly directions or using a recipe. Simpler examples include how to perform arithmetic or look up a person's name in a list.

Some algorithms are so simple or ingrained that we do not consciously remember the steps. However, precision is required when communicating the algorithm to others.
\begin{tabular}{|l}
\hline Five Essential Properties of Algorithms \\
\hline \begin{tabular}{l} 
Question: The algorithm on the shampoo bottle says: "Apply \\
shampoo. Lather. Rinse. Repeat." Which one of the five \\
essential properties does this algorithm not meet? \\
A) inputs specified \\
B) outputs specified \\
C) precision \\
D) reasonable operations \\
E) finiteness
\end{tabular}
\end{tabular}

\section*{Group Discussions}

Provide an algorithm for brushing your teeth.

\section*{Specifying Algorithms using Language}

An algorithm must be written using a language understood by both the writer of the algorithm and the reader who will use it.

For computer algorithms, the writer is a human programmer, and the reader is the computer. Natural languages like English are easy for humans, but are ambiguous and often require domain knowledge and context. Instead, we use precise programming languages (e.g. HTML/JavaScript).

A common barrier for students with programming is that the language is unfamiliar and that the computer requires precision. Remember, have patience!
-Learning a computer language is similar to learning a foreign language like Spanish.

\section*{Divide-and-Conquer Grouping Instructions}

The idea of abstraction is so important in programming that considerable effort is made to group similar instructions together so that they can be re-used.

Once a set of instructions is well-defined and tested, it is put in its own component that can be re-used to solve other problems.

Grouping instructions allows programmers to use algorithms to solve other problems without re-creating them. It also allows programmers to focus on one task at a time (divide-andconquer) and build up solutions to larger problems.

\section*{Algorithm Performance}

There is a whole area of computer science studying the performance of algorithms.

The goal is to find the algorithms that solve the problems in the least amount of time and use the least amount of memory.

Algorithms are usually compared based on the number of operations they perform or the amount of space they use. This way it does not matter what computer is actually running the algorithm.

The best algorithms WIN - both in performance and in business.

\section*{The 5 Basic Steps of Software Development}
1) Specification
Determine the scope of your problem and what you want your
program to do.
2) Design
Determine the structures and algorithms necessary (how) to
solve your problem at a high-level of abstraction.
3) Implementation
Start implementing your algorithms/structures on the computer.
4) Testing, Execution, and Debugging
Test your program on various data sets and fix any problems.
5) Maintenance
Over time, modify your program as necessary to handle new
data or more complicated problems.

\section*{Examined your own algorithms lately?}

Question: Productive and successful people continually examine their daily routines and activities to determine ways to do things better (finish tasks quicker, make more money, be more productive, have more free time, etc.).
Have you examined any of these areas recently? (select one)
A) Your time spent traveling and routes taken.
B) How you divide your time between work, school, and play
C) Determine more effective ways to study.
D) Improving your efficiency around your home.
E) Other or none of the above

\section*{Software Development Steps}

Question: Which of the 5 steps is most often the cause of projects (and your own assignments) being unsuccessful?
A) Specification
B) Design
C) Implementation
D) Testing
E) Maintenance

\section*{Programming - Art or Science?}

There is a debate whether programming is an art or a science. - It is similar to a science because algorithms and data structures can be analyzed for performance and chosen with respect to their relevance to a particular problem
- It is like an art or craft because skills of programmers vary widely, even with similar training, and the "best" solution to the problem is often open to debate.
In computer science, we teach you the "science" component.
-We want you to understand the choices you make and the reasons for them.
\(\bullet\) However, students will all have different natural abilities and talents with respect to programming
\(\Rightarrow\) If it is easy or natural for you, great! If not, then fall back on the science and the techniques we teach to help you!

\section*{Programming: Experience}

Question: What is your programming experience?
A) I have never programmed before.
B) I have wrote instructions, recipes, manuals, or other precise information before (maybe not electronic).
C) I have wrote HTML or created web sites before this class.
D) I have experimented on my own with programming.
E) I have taken a programming class in high school or university.

\section*{Programming: Art or Science?}

Question: What do you think programming is most like?
A) Art (creativity)
B) Science (experimentation)
C) Engineering (construction)
D) All of the above
E) Other or none of the above
\(\square\)

\section*{Objectives}

Define: algorithm, program
-List and explain the five essential properties of an algorithm.
- Explain why special programming languages are used to communicate algorithms to the computer instead of English.
-List and explain the five basic steps of software development.


\section*{History: The First Programmers}

Did you know that the first programmers were almost all women?
\(\bullet\) Women worked on the first computer - the ENIAC (Electronic Numerical Integrator and Calculator) developed for the US Army in 1946 by J. Eckert and John Mauchley.
-These women were recruited from the ranks of "computers", humans that used mechanical calculators to solve complex math problems before the invention of computers.
-These pioneer programmers laid the foundation of many of the original ideas including compilers and programming languages.

\section*{Introduction to JavaScript}

JavaScript is a scripting language used primarily for web pages. - JavaScript was developed in 1995 and released in the Netscape web browser (since renamed to Mozilla Firefox).
\(\bullet\) JavaScript is standardized and supported by most browsers.

Despite the name, JavaScript is not related to Java, although its syntax is similar to other languages like C, C++, and Java.
-There are some major differences between JavaScript and Java that will not concern us here.
\(\bullet\) Aside: The term scripting means the language is interpreted (processed when needed) instead of compiled (converted to machine language directly). The difference is irrelevant to us.
\begin{tabular}{|l}
\hline History: The First Programmers \\
\hline \begin{tabular}{l} 
Did you know that the first programmers were almost all \\
women? \\
- Women worked on the first computer - the ENIAC (Electronic \\
Numerical Integrator and Calculator) developed for the US Army Lawence \\
in 1946 by J. Eckert and John Mauchley. \\
these women were recruited from the ranks of "computers", \\
humans that used mechanical calculators to solve complex math \\
problems before the invention of computers. \\
these pioneer programmers laid the foundation of many of the \\
original ideas including compilers and programming languages. \\
\end{tabular}
\end{tabular}
(

\section*{Key Points}
1) We will learn JavaScript to write instructions for the computer.
\(\bullet\) The fundamental programming concepts apply to all languages.
2) The key programming concepts covered:
- variables, values, and locations
- initialization and assignment
- expressions
-decisions and Boolean conditions

\section*{Introduction to Programming}

Remember that an algorithm is a precise sequence of steps to produce a result. A program is an encoding of an algorithm in a language to solve a particular problem.

There are numerous languages that programmers can use to specify instructions. Each language has its different features, benefits, and usefulness.

The language we will use is called JavaScript. However, our focus will be understanding the primary programming concepts that apply to all languages.

Cosc 122 - Dr. Ramon Lawrence

\section*{Some Quotes}

If you can't write it down in English, you can't code it.
-- Peter Halpern

If you lie to the computer, it will get you.
-- Peter Farrar
\begin{tabular}{|c|}
\hline JavaScript: Basic Rules \\
\hline \begin{tabular}{l}
To program in JavaScript you must follow a set of rules for specifying your commands. This set of rules is called a syntax. \\
-Just like any other language, there are rules that you must follow if you are to communicate correctly and precisely.
\end{tabular} \\
\hline \begin{tabular}{l}
Important general rules of JavaScript syntax: \\
- JavaScript is case-sensitive. \\
\(\Rightarrow\) Main() is not the same as main() or MAIN() \\
-JavaScript accepts free-form layout. \\
\(\Rightarrow\) Spaces and line breaks are not important except to separate words. \\
\(\Rightarrow\) You can have as many words as you want on each line or spread them across multiple lines. \\
\(\Rightarrow\) However, you should be consistent and make your code easy to read.
\end{tabular} \\
\hline
\end{tabular}

Page 7

\section*{Fast Food Example}



\section*{Our Running Example Do you want fries with that?}

We will use an example program for our discussion that calculates the total cost of a fast food order.

Inputs:
- burger - may be "none", "hamburger", or "cheeseburger"
- fries - may be "none", "small", or "large"
- drink - may be "none", "small", or "large"

Output:
the total in dollars of the order including tax (7\%)
COSC 122 - Dr. Ramon Lawrence
the total in dollars of the order including tax (/\%)

\section*{Fast Food Example Code}


\section*{Values, Variables, and Locations Example}

We want to store a number that represents the total order value. Step \#1: Declare the variable by giving it a name
var total;
-The computer allocates space for the variable in memory (at some memory address). Every time we give the name total, the computer knows what data item we mean.

\begin{tabular}{|l|l|l|}
\hline Values, Variables, and Locations \\
Example (2)
\end{tabular}

\begin{tabular}{|l|l|}
\hline Values, Variables, and Locations \\
Example (3)
\end{tabular}


\section*{Aside: Good Variable Names}

As a programmer you have flexibility on the names that you assign to your variables.
-However, names should be meaningful and explain how the variable is actually used in your program.

Example:
var \(t=0\);
var total \(=0\);
Avoid naming variables as reserved words. A reserved word is a string that has special meaning in the language.
\(\bullet\) e.g. if, var, else

\section*{Variables - Definitions}

Question: Which of the following statements is correct?
A) The location of a variable may change during the program.
B) The name of a variable may change during the program.
C) The value of a variable may change during the program.

\section*{Variables - Correct Variable Name}

Question: Which of the following is a valid JavaScript variable?
A) aBCde123
B) 123 test
C) \(t_{-} e s_{-} t\) !

\section*{General Syntax Rules}

A program is a list of statements (instructions).

PRIMARY RULE: Every statement must be terminated by a semi-colon ";".
\(\bullet\) Note the statement terminator character varies by language.

Other rules:
- You may have multiple statements on a line as long as each ends with a semi-colon.
- A statement may cross multiple lines.

\section*{General Syntax Rules: Comments}

Comments are used by the programmer to document and explain the code. Comments are ignored by the computer.
There are two choices for commenting:
-1) One line comment: put "//" before the comment and any characters to the end of line are ignored by the computer.
-2) Multiple line comment: put "/*" at the start of the comment and " \(\star /\) " at the end of the comment. The computer ignores everything between the start and end comment indicators.

\section*{Example:}
/* This is a multiple line
comment.
With many lines. */
// Single line comment
// Single line comment again
\(\mathrm{d}=5.0\); // comment after code

\section*{Variable Types \\ A variable has a name for a data item and a type. \\ - JavaScript is different than most languages because you do not have to tell the computer what type the variable is when you declare it. The variable can store any type (although it is not recommended to change types). \\ The data types that we will use are: \\ - numbers - both integers and float/doubles \\ - strings - sequences of characters \\ -Boolean - true or false}
\begin{tabular}{l} 
StríngS \\
\begin{tabular}{l} 
Strings are sequences of characters that are surrounded by \\
either single or double quotes.
\end{tabular} \\
\begin{tabular}{l} 
Example: \\
var personName = "Ramon Lawrence"; Ramon Lawrence \\
personName \(=\) "Joe Smith"; \\
Question: What is the difference between these two statements? \\
\end{tabular} \\
\hline
\end{tabular}

\section*{Rules for Strings in JavaScript}

String rules:
\(\bullet\) Must be surrounded by single or double quotes.
- Can contain most characters except enter, backspace, tab, and backslash.
\(\Rightarrow\) These special characters must be escaped by using an initial " \(\backslash\) ".
\(\Rightarrow\) e.g. \(\backslash \mathrm{n}-\) new line, \(\backslash^{\prime}\) - single quote, \(\backslash \backslash\) - backslash, \(\backslash\) " - double quote
\(\bullet\) Double quoted strings can contain single quoted strings and vice versa.
- Any number of characters is allowed.
- The minimum number of characters is zero " " , which is called the empty string.
\(\bullet\) String literals (values) have the quotation marks removed when displayed.

Page 24

```
COSC 122 - Dr. Ramon Lawrenc
The Assignment Statement
An assignment statement changes the value of a variable.
 the variable on the left-hand side of the = is assigned the value from the
 right-hand side.
 The value may be changed to a constant, to the result of an expression, or
 to be the same as another variable
 =>The values of any variables used in the expression are always their values
 before the start of the execution of the assignment.
Examples:
```
var A, B;
```
var A, B;
\(\mathrm{A}=5\);
\(\mathrm{A}=5\);
\(B=10 ;\)
\(B=10 ;\)
\(B=10 ;\)
\(A=10+2 ; ~\)
\(B=10 ;\)
\(A=10+2 ; ~\)
\(B=A ;\)
\(A=2 * B\)
\(B=A ;\)
\(A=2 * B\)
\(B=A ;\)
\(A=2 * B+A-5 ;\)
```
\(B=A ;\)
\(A=2 * B+A-5 ;\)
```

> var A, B;
```

\section*{The Assignment Statement}

An assignment statement changes the value of a variable.
\(\Rightarrow\) The variable on the left-hand side of the \(=\) is assigned the value from the right-hand side.
\(\Rightarrow\) The value may be changed to a constant, to the result of an expression, or The values of any variables used in the expression
before the start of the execution of the assignment.

Examples:

\section*{Expressions - Operator Precedence}

Each operator has its own priority similar to their priority in regular math expressions:
-1) Any expression in parentheses is evaluated first starting with the inner most nesting of parentheses.
2) Unary + and unary - have the next highest priorities.
-3) Multiplication and division ( \({ }^{*}\), /, \%) are next.
4) Addition and subtraction (+,-) are then evaluated.

An operator can be:
- unary - applies to only one operand
\[
\Rightarrow \text { e.g. } d=-3.5 ; \quad / / \text { " }- \text { " is a unary operator, } 3.5 \text { is the operand }
\]
- binary - applies to two operands
\[
\Rightarrow \mathrm{e} . \mathrm{g} \mathrm{~d}=\mathrm{e}^{*} 5.0 ; \quad / / \text { "*" is binary operator, e and } 5.0 \text { are operands }
\]

\section*{String Operators: Concatenation}

The concatenation operator is used to combine two strings into a single string. The notation is a plus sign ' + '.

\section*{Example:}
```
var string1 = "Hello";
var string2 = " World!";
var result = string1 + string2; //result = "Hello World!"
The plus sign is used for addition, but it makes sense as the symbol for string concatenation as well.
Using the same symbol as a operator in multiple different ways is called operator overloading.
```

\section*{Assignment}

Question: What are the values of \(A\) and \(B\) after this code?
var A, B;
\(\mathrm{A}=2\);
\(B=4 ;\)
\(\mathrm{A}=\mathrm{B}+\mathrm{B} / \mathrm{A} ;\)
\(\mathrm{B}=\mathrm{A} * 5+3\) * \(;\)
A) \(A=6, B=36\)
B) \(\mathrm{A}=4, \mathrm{~B}=26\)
C) \(A=6, B=66\)
\begin{tabular}{|c|c|}
\hline String Concatentation & \\
\hline Question: What is the value of result after this code?
\[
\begin{aligned}
& \text { var st1="Joe", st2="Smith"; } \\
& \text { var result = st1 + st2; }
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
A) "Joe Smith" \\
B) "JoeSmith"
\end{tabular} & \\
\hline \multicolumn{2}{|r|}{Page 31} \\
\hline
\end{tabular}

\section*{Hello World Example} JavaScript Code

\section*{Running a JavaScript Program}

We run JavaScript programs within a web browser.
This means several things:
1) The file that stores the program will be an HTML document.

It should have a name like myProgram. html.
2) The JavaScript program is part of the HTML file.
\(\checkmark\) 3) Edit the document using a text editor. Test the document by opening it in Internet Explorer, FireFox, Chrome, or Safari.


\section*{Getting Input into a JavaScript Program}

There are two ways to get input from the user into your program:
-1) Make the user fill in form fields and get the value of those fields when the user clicks a button.
\(\Rightarrow\) We will see how to do this later.
2) Prompt the user with a separate window asking them for a value.

\section*{String Concatentation (2)}

Question: What is the result after this code?
```
var st1="123", st2="456";
var result = st1 + st2;
```
A) 579
B) " 579 "
C) "123456"

\section*{Getting Input Using JavaScript Code}


\section*{COSC 122 - Dr. Ramon Lawrence \\ Outputting from a JavaScript Program}

There are three ways to output information to the user:
\(\bullet\) 1) Have your code set the value of a form field.
2) Have your code write out text directly into the HTML document.
\(\bullet 3)\) Open an alert output window to the user with a message.

\section*{Outputting Data from JavaScript Code}
<html>
<title>Display a Value using an Alert Window</title>
</head>
```
<body>
Prompt for value
<body> from user
script type="text/javascript"> \(\quad\) val \(=\) window.prompt("Enter a value: ");
``` window.alert("You said: "+val); </script>
</body>
</html \(>\)

Prompt and Output Example
Prompt window:


Alert (output) window:


\section*{Input/Output Question (2)}

Question: Assume the user typed in 10 when prompted. What is shown in the HTML document after this code?
```

var val;
window.prompt("Enter a value: ");
document.write("You said: "+val);

```
A) Nothing
B) You said: 10
C) You said: undefined
D) Error

COSC 122 - Dr. Ramon Lawren

\section*{Input/Output Question}

Question: Assume the user typed in 10 when prompted. What is shown in the HTML document after this code?

\section*{var val = window.prompt( Enter a value: ");}
window.alert("You said: "+val);
A) Nothing
B) You said: 1
C) Error

\section*{Practice Questions}

For these questions, use slide \#33 as an example. Do not copy the HTML code, just write the JavaScript statements.
1) Write the JavaScript code to print:

Hello, World!
Goodbye, World!
2) Write the JavaScript code to print:

Testing...
1..2..3..
\(1+2+3=6\)
\(1 * 2 * 3=6\)
Note: You must calculate 6 in both cases not just print it! 3) Write a program to calculate and print: \((a=5, b=10)\)
MaKíng Decísions
certain conditions.
For example, if a person applies for a driver's license and is not
16, then the computer should not give them a license.
To make a decision in a program we must:
1) Determine the condition in which to make the dewrence
\(\Rightarrow\) In the license example, we will not give a license if the person is under 16 .
2) Tell the computer what actions to take if the condition is true
or false.
\(\Rightarrow\) A decision always has a Boolean or true/false answer.
The syntax for a decision uses the if statement.
Page 43

\section*{Making Decisions Performing Comparisons}

A comparison operator compares two values. Examples:
- \(5<10\)
\(\rightarrow \mathrm{N}>5 \quad / / \mathrm{N}\) is a variable. Answer depends on what is N .

Comparison operators in JavaScript:
\(\bullet>\quad\) - Greater than
\(\bullet>=\quad\) - Greater than or equal
- \(\quad\) - Less than
\(\bullet<=\quad\) Less than or equal
\(\bullet==\quad-\) Equal (Note: Not "=" which is used for assignment!)
- != - Not equal

The result of a comparison is a Boolean value which is either true or false
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{aking Decisions \({ }^{\text {cosc 122 - Dr Ramon Lawrence }}\)} \\
\hline \multicolumn{2}{|l|}{```
var j=25, k = 45;
var d = 2.5, e=2.51;
// Determine if these comparisons are true or false
(j == k) l/ false
(d == e); // ??
(d != e); // ??
    (k >= 25); // ??
(25 == j); // ??
(j > k); // ??
(e<d); // ??
```} \\
\hline \multicolumn{2}{|r|}{Page 45} \\
\hline
\end{tabular}

\section*{Valid Comparison Operators Question}

Question: Select the operator that is invalid (not allowed).
A) ! =
B) \(==\)
C) \(<=\)
D) \(\geq\)

\section*{Making Decisions Block Syntax}

Currently, using our if statement we are only allowed to execute one line of code (one statement).
\(\bullet\) What happens if we want to have more than one statement?
We use the block syntax for denoting a multiple statement block. A block is started with a "\{" and ended with a "\}".
- All statements inside the brackets are grouped together.

Example:
```

if (age > 17)
{ window.alert("You are an adult");
window.alert("You can vote!");
} ...

```

We will use block statements in many other situations as well.
```

Making Decisions
If Statement Example
var age;
var teenager, hasLicense;
age = window.prompt("Enter your age: ");
if (age > 19)
{ teenager = false;
hasLicense = true;
else if (age < 13)
{ teenager = false;
hasLicense = false;
} else
{ teenager = true; // Do not know if have license
hasLicense = false;
}
document.write("Is teenager: "+teenager);
document.write("Has license? "+hasLicense);

## Making Decisions (2)

Question: What is the output of this code?

```
var num=10;
if (num != 10)
 document.write("big");
document.write("small");
```

A) big
B) small
C) bigsmall


## Nested Conditions and Decisions Nested If Statement

We nest if statements for more complicated decisions. - Verify that you use blocks appropriately to group your code!

Example:

```
if (age > 16)
 if (gender == "male")
 document.write("Fast driver!");
 else
 else document.write("Great driver!");
 }
 else
 { document.write("Sorry! Too young to drive.");
 }
```


## Making Decisions Nested If Statement Example

var salary, tax;
var married;
married = window.prompt("Enter M=married, S=single: "); salary = window.prompt("Enter your salary: ");
tax $=$ salary*0.5;
else if (salary $>35000$ )
else tax $^{\text {elary*0.45; }}$
else
tax $=$ salary*0.30;
// End if single person
else if (married == "M")
else if (married $==$ "
\{ // Married person
// Married person
if (salary $>50000$ )
if (sax = salary*0.4;
else if (salary > 35000)
else
else tax $=$ salary*0.20;
\} // End if married person
else // Invalid input
tax $=-1$;
if (tax ! = -1)
document.write("Salary: "+salary+"<br/>")
document. write ("Tax: "+tax+"<br/>");
else
document.write("Invalid input!");


## Nested Conditions and Decisions Boolean Expressions

A Boolean expression is a sequence of conditions combined using AND (\&\&), OR (II), and NOT (!).					
- Allows you to test more complex conditions   -Group subexpressions using parentheses					
Syntax: (expr1) \&\& (expr2) - expr1 AND expr2					
(expr1) \|	(expr2) - expr1 OR expr2				
!(expr1) - NOT expr1					
Examples:   var b;					
1) $\mathrm{b}=(\mathrm{x}>10) \& \&!(\mathrm{x}<50)$;   2) $\mathrm{b}=$ (month $==1$ ) \|	(month $==2$ ) \|	(month $==3$ );   3) if (day $==28 \& \&$ month $==2)$   4) if ! (num1 $==1 \& \&$ num2 $==3$ )   5) $\mathrm{b}=((10>5\| \| 5>10) \& \&((10>5 \& \& 5>10)) ; / /$ False   Page 58			

## Boolean Expressions (2)

Question: Is result true or false?

$$
\begin{aligned}
& \text { var } \mathrm{x}=10, \mathrm{y}=20 ; \\
& \text { var result }=!(\mathrm{x}!=10) \quad \& \& \quad(\mathrm{y}==20) ; \\
& \text { document.write(result); }
\end{aligned}
$$

A) true
B) false

## Boolean Expressions (3)

Question: Is result true or false?

```
var x = 10, Y = 20;
(y <= x);
document.write(result)
```

A) true
B) false

## Making Decisions (4)

Question: What is the output of this code?
var num=12;
if (num >= 8)
document.write("big");
if (num == 10)
document.write("ten");
else
document.write("small");
A) big
B) small
C) bigsmall
D) ten
E) bigten

## Practice Questions

1) Create the Boolean expressions in JavaScript for:
a) $x$ does not equal $y$ OR $y$ is greater than $z$
-b) $x$ is greater than 0 AND less than 100
c) $x$ is not less than 0 OR greater than 100
2) Write a program that reads two numbers and prints them in sorted, descending order. Challenge: Do it for three numbers.
3) Challenge: Write a program that translates a letter grade into a number grade.

- Letter grades are A,B,C,D,F possibly followed by + or - with values $4,3,2,1$, and 0 . There is no $\mathrm{F}+$ or F -. $\mathrm{A}+$ increases the value by 0.3 , a decreases it by 0.3 . An $\mathrm{A}+$ equals 4.0.
- You need to use two functions:
$\Leftrightarrow<$ variableName>.length - length of string given by variableName $\Rightarrow<$ variableName>.charAt $(0)$ - character at position 0 in string Page 64


## Review: Key Programming Concepts

Some key concepts in programming:

- variables - names for data items to be manipulated
- locations - addresses of data items in memory
- values - the value stored at a particular location and referenced using a given variable name
- initialization - setting beginning values for variables
- assignment - general form of initialization where the value of a variable is set to another value
$\bullet$ decisions - performing different actions based on testing a condition
- expressions - consist of operands and operators and yield a result


## Objectives

-Compare and contrast: algorithm and program
List and define the key programming concepts covered.

- Explain the difference between variables, values, and locations.
- Remember the rules for variables, comments, and statements.
- Remember the rules for declaring and using strings.
-Understand and explain assignment operator.
Define: operator, operand, unary, binary
- Remember operator precedence for expressions.
-Recall the string concatenation operator.
-Be able to write and execute JavaScript code in HTML files. -Define: operator overloading


## Objectives (2)

$\bullet$ Know how to get input and send output to and from the user.
-Write decisions using the if statement.
-Define: Boolean, condition
List and use the comparison operators

- Explain the dangling else problem.
-Construct and evaluate Boolean expressions using AND, OR, and NOT.


Iteration \& Looping
Overview
:---
If all programs consisted of simple statements and decisions as
we have seen so far, then we would never be able to write
enough code to use a computer effectively.
To make a computer do a set of statements multiple times we   use looping structures.   A loop repeats a set of statements multiple times until some   condition is satisfied.   Each time a loop is executed is called an iteration.

Page 3

```
The ++ and -- Operators
 It is very common to subtract 1 or add 1 from the current value
 of an integer variable.
 There are two operators which abbreviate these operations:
 *++- add one to the current integer variable
 *-- - subtract one from the current integer variable
Example:
var j=0;
 j++; // j = 1; Equivalent to j = j + 1;
 j--; // j = 0; Equivalent to j = j - 1;
```


## Iteration \& Looping The For Loop

Although JavaScript will allow almost any code in the three sections, there is a typical usage:
for (i = start; $\mathbf{i}<$ end; i++)
\{ statement

Example:
var i;
for ( $i=0 ; i<5 ; i++)$
\} document.write(i); // Prints 0 to 4

For Loop and Wh	COSC 122 - Dr. Ramon Lawrence op
The for loop is like a short-hand for the while loop:```var i=0; var i; while (i < 10) for (i=0; i < 10; i++) { document.write(i); { document.write(i); i++; }```	

JavaScript Rules for Loops

The loop variable i must be declared.
-i, j, and $k$ are used by convention, but you can pick any name you want.
The starting point of the iteration can begin anywhere, including negative numbers.
The continuation test must be an expression that results in a Boolean value. It should contain the loop variable to avoid an infinite loop.

The next iteration usually changes the value of the loop variable by 1 . It does not always have to be one, and it can be positive (such as +2 ) or negative ( -1 ).


Do not put a semi-colon at the end of the loop:

$$
\begin{array}{ll}
\text { for (i=0; i <= 10; i++); } & / / \text { Causes empty loop } \\
\text { \{ document.write(i); } & / / \text { Prints } 11
\end{array}
$$

COSC 122 - Dr. Ramon Lawrence

## Common Problems - Infinite Loops

Infinite loops are caused by an incorrect loop condition or not updating values within the loop so that the loop condition will eventually be false.
Examples:
var i;
for ( $\mathbf{i = 0}$; $\mathbf{i}<10$; $i-$ ) // Should have been i++
\{ document.write(i); // Infinite loop: 0,-1,-2,..
$\}$
$i=0$
while (i < 10)
\} document.write(i); // Infinite loop: 0,0,0,..

## Common Problems - Off-by-one Error

The most common error is to be "off-by-one". This occurs when you stop the loop one iteration too early or too late.

Example:
-This loop was supposed to print 0 to 10 , but it does not.

```
for (i=0; i < 10; i++)
 document.write(i); // Prints 0..9 not 0..10
```

Question: How can we fix this code to print 0 to 10 ?

## Looping Review

A loop structure makes the computer repeat a set of statements multiple times.

- for loop is used when you know exactly how many iterations to perform
while loop is used when you keep repeating the loop until a condition is no longer true

When constructing your loop structure make sure that: - you have the correct brackets to group your statements - you do not add additional semi-colons that are unneeded -make sure your loop terminates (no infinite loop)
Remember the operators ++ and -- as short-hand notation.

## For Loops

Question: What is the output of this code?

```
for (i=2; i < 10; i--)
{ document.write(i);
```

A) nothing
B) infinite loop
C) The numbers $2,3,4, \ldots, 9$
D) The numbers $2,3,4, \ldots, 10$

## Practice Questions: Iteration

1) How many times does each loop execute:
a) for $(j=0 ; j<=10$; $j--$
b) $\operatorname{for}(j=0 ; ~ j<=10 ; ~ j++$
c) for (j=0; j < 10; j++)
d) for ( $j=-10 ; j<=10 ; j++$ )
e) $\operatorname{for}(j=0 ; j<=20 ; j=j+2)$
2) Write a program to print the numbers from 1 to $N$.
a) Modify your program to only print the even numbers.
3) Write a program to calculate and print the sum of the numbers from 1 to $N$. E.g. If $N=4$, print $10(1+2+3+4=10)$.

## For Loops

```
```

for (i=0; i <= 10; i++);

```
```

for (i=0; i <= 10; i++);
{ document.write(i);

```
```

{ document.write(i);

```
```

\}
A) nothing
B) error
C) 11
D) The numbers $0,1,2, \ldots, 10$

Question: What is the output of this code?

## For Loops

```
for (i=0; i < 10; i++)
```

for (i=0; i < 10; i++)
{ document.write(i);
{ document.write(i);
A) nothing
B) error
C) The numbers $0,1,2, \ldots, 9$
D) The numbers $0,1,2, \ldots, 10$
}

```
) The number 0,1,2,.,10

\section*{COSC 122 - Dr. Ramon Lawren}

\section*{Question: What is the output of this code?}

\section*{Arrays Overview}

Suppose you need many variables in your program.
You could either create a separate name for each variable:
- var d1, d2, d3, d4, d5;

Or you could create an array that has multiple spots (indexes): - var myArray \(=\) new Array (5);
- myArray[0] = 5;
-myArray[4]= 3;

Arrays
An array is a collection of data items of the same type.
Technically, JavaScript allows an array to contain different
types, but that is not common in other programming languages.
The name Lawrence of the array is an identifier like any other variable.
However, until you actually create the space for the array using
new, no array exists in memory.
*var strings = new Array (10);

\section*{Array Indexing}

When creating an array using new, the number in parentheses
is the number of spots in the array:
-var a = new Array (20); // 20 elements

Note that the first spot of the array has index 0 instead of 1.
\(\bullet\) In the previous example, the first index is 0 and the last is 19 .
When an array is first created, all its values are undefined.

To access or set a value in an array, use its index:
- \(a[0]=10 ; \quad / /\) Sets first spot to 10
\(\rightarrow a[19]=a[0] ; \quad / /\) Sets last element same as 1st
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Array Details \({ }^{\text {cosc } 122 \text { - Dr. Ramon Lawence }}\)} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
If you provide an array index outside of the valid range, JavaScript will automatically re-size the array for you (for updates) or returned undefined (for reads). \\
-This is not common behavior. Most languages generate an error called an exception. \\
To get the length of an array in your program: \\
- var a = new Array (20); \\
- var size = a.length; // Returns 20
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{Page 21} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Arrays & \\
\hline Question: What is the size of this array?
var myArray = new Array[10]; & \\
\hline \begin{tabular}{l}
A) error \\
B) 10 \\
C) 9 \\
D) 11
\end{tabular} & \\
\hline \multicolumn{2}{|r|}{Page 23} \\
\hline
\end{tabular}

Practice Questions: Arrays
1) Create an array with name myArray that has 20 spots.
2) Set the value of the \(1^{\text {st }}\) spot to 10.
3) Set the value of the last spot to 1.
4) How don Lawrence
5) Create an array that has 10 spots. Put the numbers from 1
to 10 in the array.
\begin{tabular}{l}
COnc/uSion \\
\hline \hline A loop allows the repetition of a set of statements multiple \\
times until some condition is satisfied. \\
\(\quad\) We will primarily use for loops that have 3 components: \\
\(\quad \Rightarrow\) initialization - setup iteration variable start point \\
\(\quad \Rightarrow\) continuation - use iteration variable to check if should stop \\
\(\Rightarrow\) next iteration - increment/decrement iteration variable
\end{tabular}

Arrays are a data structure for storing multiple items using the same name. Arrays are often used with loops, as a loop can access each individual item by its index.

\section*{Key Points}
1) Functions are used to group statements that perform a particular task so that they can be easily used.
2) Forms are used to input and receive output from the computer. A form consists of elements such as buttons, sliders, lists, and boxes.
3) Events are notifications that something occurs. Your program contains event handlers to indicate what to do when an event is detected.
\begin{tabular}{|l}
\hline Important: Programming Incremental/y \\
\hline NEVER write code in a monolithic fashion. \\
ALWAYS write code by adding only a few lines or features at a \\
time and then testing. \\
Thus, coding is an incremental process. \\
- Write some code. \\
T Test in browser. Fix errors. \\
Repepeat (until done). \\
Problem decomposition involves breaking down a large \\
problem into subproblems which are easier to solve. Dividing \\
problems into subproblems is called divide and conquer. \\
Suggestion: Complete HTML document tags before writing \\
complicated JavaScript code and event handling. \\
\end{tabular}

Page 3

\section*{Defining and Calling Functions and Procedures}

Creating a function involves writing the statements and providing a function declaration with:
- a name (follows the same rules as identifiers)
- list of the inputs (called parameters) and their data types
-the output (return value) if any
Calling (or executing) a function involves:
\(\bullet\) providing the name of the function
\(\bullet\) providing the values for all parameters (inputs) if any
\(\bullet\) providing space (variable name) to store the output (if any)

\section*{Functions and Procedures}

A procedure (or method) is a sequence of program statements that have a specific task that they perform.
-The statements in the procedure are mostly independent of other statements in the program.

A function is a procedure that returns a value after it is executed.

We use functions so that we do not have to type the same code over and over. We can also use functions that are built-in to the language or written by others.

\section*{Creating a Function}

Question: This function is supposed to take two numbers as input and return their sum. What is wrong with it?
```

function addTwoNum(num1)
{ var result = num1 + num2;

```
A) The two numbers are not added together.
B) The result of the addition is not returned back.
C) Only one number to add is passed into the function.
D) The name of the function is not correct.

COSC 122 - Dr. Ramon Lawrence

\section*{Creating a Function (2)}

Question: We want to create a function that multiplies two numbers together. Which of these functions is correct?

\}
B) function multTwoNum (num1, num2, num3) return num1 * n2;
function multTwoNum (num1, num2
var result = num1 * num2;
function multTwoNum (num1, num2)
D)
```

        return num1 * num2;
    ```

\section*{Functions and Procedures Notes}
-When declaring a function, you must put the parenthesis " ()" after the name even if the function has no parameters.
- If a function returns nothing, you can just say "return;".
- Parameter is the term used for input when viewing from inside the function (function's perspective). Argument is the term used for input when viewing from outside the function.
-Functions are declared only once, but can be called as many times as you want
- Execution of the method halts at the return statement and any value in the statement is passed back to the caller.
- You may have multiple return statements in a method, but only one will ever be executed for a given execution.

\section*{Functions (2)}

Question: What is the output of this code?
function subtractNum (a, b)
\{ return \(a-b ;\}\)
var \(x=5, y=8\);
var result \(=\) subtractNum(x,y);
result \(=\) result + subtractNum (\(y, x)\);
document.write(result);
A) error
B) 3
C) -3
D) 0

\section*{Functions (3)}

Question: What is the output of this code?
```

var num=9;
var result = doubleNum(doubleNum(num)),
document.write(result)
function doubleNum(n)
{ return n*2; }

```
A) 36
B) 18
C) 9
D) error

\section*{Built-In Functions}

JavaScript has many built-in functions that you can use. These methods are grouped into objects.
- An object is a related group of code and data.
(Some of the) pre-defined objects in JavaScript:
- Array
- Date
- Math
\(\Rightarrow\) Functions: \(\operatorname{abs}(\mathrm{x})\), floor(\((\mathrm{x}), \min (\mathrm{x}, \mathrm{y}), \max (\mathrm{x}, \mathrm{y})\), random(), \(\operatorname{sqrt}(\mathrm{x})\)
- Number
-String
\(\Rightarrow\) Functions:
- substring(start, end) - start is first character index, end is last index (not inc.)
- charAt(index) - character at particular location in string (starting at 0)
. Others: toUpperCase(st), toLowerCase(st)

\section*{Advanced: Calling Object Methods}

A method is called on an object by supplying an object instance and the name and arguments to the method.
Syntax:
objectInstance.methodName(arguments)
Remember:
Each object has its own methods that it can perform.
- Each object has its own area of memory storing its data.

Tricky: A String object may be created for us automatically, so we do not always have to create String objects. We use the already created Math object for math functions.

\section*{Functions (4)}

Question: What is the output of this code?
 function evenOrOdd (\(n\))
if (\(n \% 2==0)\)
 \{ return "even"
 \}
 else
 return "odd"
 \} \}
\}
var num = 10;
document.write(evenOrOdd(11));
document.write(evenOrOdd(num))
A) oddodd
B) oddeven
C) evenodd
D) eveneven

\section*{Built-in Function Example}

\section*{Practice Questions: Functions}
1) Write a function that returns the sum of three numbers.
2) Write a function that returns the largest of two numbers.
3) Write a function that writes out the numbers from 1 to N where N is its input parameter.
4) Write a function that determines leap years:
function isLeapYear (year)
- A leap year is a year divisible by 4, except years divisible by 100 and not by 400 . (i.e. 1900 is not a leap year, 2000 is.)

For each function, provide a sample function call.
Page 18

Input Forms
A form is an input page that contains controls such as buttons, lists, and boxes that allow the user to input information.

Below is an example form that we will create using HTML:

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{HTML Buttons} \\
\hline \multicolumn{5}{|c|}{A button performs an action when clicked.} \\
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
There are some default buttons with special names: \\
- reset - clears all form fields \\
- submit - sends all data in form fields to web server
\end{tabular}} \\
\hline \multicolumn{5}{|c|}{```
how and where to send data when submit button is clickedNone
```} \\
\hline \multicolumn{5}{|r|}{Reset Submit to Server Page 26} \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline Label Tag & Cosc 122-Dr. Ramon Lawrence \\
\begin{tabular}{l} 
There is a label tag that will associate a label with an input \\
tag and clicking on the label gives that input focus.
\end{tabular} \\
\begin{tabular}{l} 
Example: \\
<label for="firstName">First Name: \(</\) label> \\
<input type="text" id="firstName" \(/>\)
\end{tabular} \\
\hline
\end{tabular}

<hte1>
<hte1>


year:
Given this HTML code:
<input type="radio" name="year" value="1"/>1
<input typeo"radio" name=-year", value \(=-2=/>2\)

my major is:
<solect name="major">


what the
page looks
<option value="ENGL">Rnglizh</option>
<option value="psyC">paychology</option
my minorz are: <br>
<input type="checkbox" name="Arta">Arts<br>
Cinput type="chockbox" namo="Eng1ish">8ngliish<br>
<input type="checkbox" name=" Paychology">Raycholeg
<input type="checkbox" name="science">science<br>
other notes:<br/> <textarea rows="4" cols="30"></textarea>〈br>
<input type="button" valua="Register">
<input type="submit" valuo="submit">
</form>
</body>/htm1>
Events and Event Hand/ing Overview
An event is a notification to your program that something has
occurred.
\&or graphical events (mouse click, data entry), the browser Lawrence
notifies your program that an event occurred.
\(\Rightarrow\) There are different kinds of events such as keyboard events, mouse
click events, mouse movement events, etc.
An event handler is part of your program that is responsible for
"listening" for event notifications and handling them properly.
An event source is the user interface component that
generated the event.
\(\bullet\) A button, a window, and scrollbars are all event sources.
The event source is NOT the user, the mouse, or the keyboard.


\section*{HTML Event Example}

Below is an example of a form that detects and alters its appearance using HTML events:



\section*{HTML Event Code (2)}
```

<select name="colors" onchange="changeColor(this)"> \longleftarrow_ onChange event
<option value="red">red</option>
<option value="blue" selected="selected">blue</option>
<option value="yellow">yellow</option>
<option value="green">green</option>
</select>

My hobbies are:

<textarea rows="5" cols="30" name="ta">
</textarea>

<input type="button" value="CLICK HERE!" onclick="count++;
myForm.ta.value=myForm.ta.value+'You clicked '+count+' times!\n';">
<input type="reset" value="Reset"
 onclick="return confirm('Are you sure?');"/>
input type="submit" value="Submit" name="submitButton"
onmouseover="overSubmit()" onmouseout="offSubmit()">
</form>

```

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{de (4) \({ }^{\text {cosc } 122 \text { - Dr. Ramon Lawrence }}\)} \\
\hline \multicolumn{2}{|l|}{```
function noNumbers(ev)
{
    var keyVal = getKey(ev);
    if (keyVal >= 48 && keyVal <= 57) // Key pressed is a number
        return false;
```} \\
\hline \multicolumn{2}{|l|}{\}} \\
\hline \multicolumn{2}{|l|}{```
function changeFontUp()
{ document.body.style.fontSize="120%"; }
```} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
function changeFontDown() \\
Changes font size of all \\
\{ document.body.style.fontSize="80\%" text in document.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{window.alert('Get some exercise! Ride a bike!'); else} \\
\hline window.alert("You didn't need a car anyways!") & Page 40 \\
\hline
\end{tabular}

\section*{Advanced: HTML Document Objects}

Your JavaScript program has access to all parts (called objects) of your HTML document.
The entire document is represented by a document object.
- You can change foreground and background colors using it.
-When you name your document parts (such as forms and inputs), you can later refer to and change the properties of these elements using your JavaScript code.
A property is information about an object.
-Properties include value, fgcolor, bgcolor, name, and type. Other properties depend on the type of object.
\(\bullet\) To change a property value using assignment, provide the name of the object then "." then the property name.
Watch for: The keyword "this" refers to the current object and its properties.

Advanced:
How are HTML pages created?
1) An HTML page can be created once (statically) and saved on a server. Every request for the page returns it exactly as it was originally created.
2) An HTML page can be produced dynamically by program code running on the server.
-The server-side code can access databases, run functions, or change the appearance or function of the page in response to user input and preferences.

\section*{Advanced: When is JavaScript code executed?}

JavaScript code is executed:
-1) While the page is being loaded
\(\Rightarrow\) A browser builds a page by reading through the HTML file, figuring out all tags and preparing to build page.
\(\Rightarrow\) Then, it removes JavaScript tags and all text between them, and does whatever the JavaScript tells it to do.
\(\Rightarrow\) Example: We have used document. write () to tell the browser to put text into the HTML document.
2) Interactively after the page is displayed (most common).
\(\Rightarrow\) Example: HTML elements (such as buttons) may have events associated with them that run JavaScript code

\section*{Events}

Question: What is the event, event source, and event handler in this code?
<input type="button" value="Button 1" name="button1"
onclick="doButtonClick()">
A) event - button, event source - button, event handler onclick
B) event - onclick, event source - the mouse, event handler - onclick
C) event - onclick, event source - button, event handler doButtonClick()
D) event - onclick, event source - button1, event handler doButtonClick()
\begin{tabular}{|c|c|}
\hline Event Names & Events \\
\hline \begin{tabular}{l}
Question: Find the names of the three types of events below. Select the appropriate order of event names. \\
- happen when the mouse is clicked \\
- happen when a key is pressed \\
- happen when the mouse passes over something \\
A) onmouseclick, onkeypress, onmouseover \\
B) onclick, onkeyboardpress, onmouseout \\
C) onmouseclick, onkeyboardpress, onmouseover \\
D) onclick, onkeypress, onmouseover
\end{tabular} & \begin{tabular}{l}
Question: Philosophical challenge: If an event occurs but there is no code to handle it, did it actually happen? \\
Example: You click on a button and see nothing change. Did something happen? \\
A) Yes, the event happened, but it was ignored by the operating system. \\
B) Yes, the event happened, but it was ignored by our program. \\
C) No, the event did not happen because our program was not listening for it.
\end{tabular} \\
\hline Page 47 & Page 48 \\
\hline
\end{tabular}

Question: TRUE or FALSE: Event names are case-sensitive.
A) TRUE
B) FALSE

\section*{Conclusion}

Functions and procedures are used to group statements that perform a particular task so that they can be easily used.
Functions must be declared before they can be called (used).

Forms are used to send input and receive output from the computer. A form consists of elements such as buttons, sliders, lists, and boxes.
\(\bullet\) HTML forms use the form and input tags.

Events are notifications that something occurs. Event handlers are code statements that you write indicating to the computer what should be done when an event happens.

\section*{Cosc 122 - Dr. Ramon Lawrence}


\section*{Spreadsheet Overview}

A spreadsheet organizes information into a two-dimensional array of cells (a table).

A cell has two components:
- an address - specified given a row and column number
\(\bullet\) a location - that can store a number, text, or formula

The power of a spreadsheet is that we can write simple formulas (commands) to perform calculations and immediately see the results of those calculations.
Spreadsheets are very common in accounting and reporting applications.

Page 3
\begin{tabular}{l} 
Spreadsheet Addressing \\
\hline The rows in a spreadsheet are numbered starting from 1. \\
The columns are represented by letters. \\
A is column 1, B is column 2,..., Z is column 26, AA is column \\
\(27, \ldots\) \\
A cell is identified by putting the column letter first then the rown Lawence \\
number. \\
Qe.g. B3 is the 2nd column and the 3rd row. \\
Question: What column number is AD? How about BAD?
\end{tabular}
\begin{tabular}{|l}
\hline Key Points \\
\hline \begin{tabular}{l} 
1) Spreadsheets are programs for storing and manipulating \\
data that is represented as a table of cells. \\
2) Each cell has a row number and column label which \\
combine to represent its address. \\
3) Spreadshent Lavrence \\
to do computations. They allow you to organize data and write formulas \\
and analysis. \\
\end{tabular} \\
\hline
\end{tabular}


\begin{tabular}{|l}
\hline Spreadsheet Selecting Ce//S \\
\hline Multiple ways of selecting cells: \\
1) With the mouse, (left) click and drag mouse to select a \\
rectangle region of cells. \\
2) With keyboard, hold SHIFT key and use arrow keys to select \\
a rectangle region of cells. \\
3) With mouse and keyboard, while holding CTRL key, (left) \\
click on individual cells to select non-contiguous cells. \\
4) Click on a row number to select a whole row. \\
4) Click on a column header to select a whole column. \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline Manipulating Cells \\
\hline \begin{tabular}{l}
Once you have selected one or more cells, there are several common actions you can perform: \\
-1) DELETE \\
\(\Rightarrow\) delete the contents of all cells by pressing delete key \\
\(\Rightarrow\) delete the contents and the cell locations (then shift remaining) by selecting Edit menu, Delete. . . or Delete... from pop-up menu (brought up by right click). \\
2) Cut, Copy, Paste \\
\(\Rightarrow\) cut - copies selected cells to clipboard and removes from document \\
\(\Rightarrow\) copy - copies selected cells to clipboard \\
\(\Rightarrow\) paste - copies cells in clipboard to sheet starting at currently selected cell \\
\(\bullet 3\) ) Add selected cells to a formula (requires that you were previously constructing a formula before selecting the cells).
\end{tabular} \\
\hline Page 11 \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline Formula Expressions \\
\hline \begin{tabular}{l} 
The power of formulas comes from using cell references (similar \\
to variable names in programming). \\
Cell reference examples: \\
\(=\mathrm{A} 1+\mathrm{A} 2\) \\
\(=\mathrm{B} 1+\mathrm{A} 3-\mathrm{A} 4\) \\
\\
\\
\end{tabular} \\
\end{tabular}

\section*{Hiding Columns and Rows}
You can hide a column or row by right-clicking on the column or row header and selecting Hide. The column/row still exists but will not be displayed or printed unless unhidden.


\section*{Formula Expressions}

A formula expression can consist of literals (numbers, text strings), operators, functions, and cell references.

Simple mathematical expressions:
- \(=1\) + 5
* \(=1.5 * 3.14+42\)

Common functions:
- = ROUND (PI,2) // Result is 3.14
- = CONCATENATE ("Hello", " World") // Hello World
- Other common functions for trigonometry, dates, and financial.

\section*{Spreadsheets Selecting Cells}

Question: Which method allows you to select non-contiguous cells in a spreadsheet?
A) hold SHIFT key and use arrow keys
B) With the mouse left click on a cell and drag mouse
C) hold CTRL key and use arrow keys
D) hold CTRL key and left click on cells
\begin{tabular}{|l|}
\hline Spreadsheets \\
Formulas
\end{tabular} \begin{tabular}{l} 
Question: A cell contains the following: \(=3+5^{*} \mathbf{2}\) What is the \\
value of the cell? \\
A) 13 \\
B) 16 \\
C) \(=3+5^{*} 2\) \\
\\
\\
\end{tabular}

\section*{Spreadsheets \\ Formulas}

Question: A cell contains the following: 'ABC'+'DEF' What is the value of the cell?
A) error
B) \(A B C D E F\)
C) 'ABC'+'DEF'
Advanced Spreadsheet Addressing
The dollar sign "\$" is a special symbol that indicates an
absolute address.
By default, addresses are "relative" in the senon Lawrence
in a formula that is copied to another cell, they will be changed
relative to where they were copied from their origin.
Example:
Cell A1 has the formula =A2+B1
Copy contents of cell A1 to cell C4.
Formula changes to =C5+D4 because moved down three rows
and over two columns.
- If cell A1 had the formula =\$A\$2+\$B\$1, then the same formula
would be in cell C4.
Question: What if formula was =\$A2+B\$1?

\section*{Spreadsheets \\ Formulas and References}

Question: Cell A1 contains the following: =\$B2+D\$4 What is the formula if the cell is copied to cell D3?
A) error
B) \(=\$ B 2+D \$ 4\)
C) \(=\$ B 4+F \$ 4\)
D) \(=\$ B 4+G \$ 4\)


\section*{Aggregate Formulas}

An aggregate formula computes a summary function over a range of cells. The values can either be literals or cell locations. Common functions are:
-MIN(<value list>) - returns minimum value in list
- MAX(<value list>)
- returns maximum value in list
-SUM(<value list>) - returns sum of all values in list
- AVERAGE (<value list>) - returns average of values in list
- COUNT (<value list>) - returns count of values in list
- MEDIAN (<value list>) - returns median value of list

If specifying a cell rectangle, give the upper left and lower right corners, separated by a colon.
\(\bullet\) e.g. =average (A3:E6) - rectangle of 4 rows and 5 columns \({ }_{\text {Page }} 24\)

\begin{tabular}{l} 
Spreadsheets \\
Aggregate Formulas \\
\hline \begin{tabular}{l} 
Question: Assume the three cells in the range A1:C1 contain \\
numbers. Which of these formulas is ALWAYS the largest? \\
A) MAX(A1:C1) \\
B) MIN(A1:C1) \\
C) COUNT(A1:C1) \\
D) SUM(A1:C1) \\
E) none of the above are always guaranteed to be the largest \\
Page 27 \\
\hline
\end{tabular}
\end{tabular}





\section*{Spreadsheets for Data Management}

A spreadsheet is often used as a simple form of a "database". A database is an organized representation of information.
- Examples: schedules and calendars, timesheets, expenses and finances, records, notes, and recipes, data research/analysis

We can use a spreadsheet as a database by:
\(\bullet\) Using a row to store all the information about something we want to represent.
Giving each column a meaningful name. A column represents a property or feature of the object stored in the row.
\(\bullet\) Using the formulas to calculate new facts from the data.
Using sorting to organize the data by key features.
- Using simple filtering (querying) to only show the most important data or data of interest.
\begin{tabular}{|l|}
\hline Filtering \\
\hline \begin{tabular}{l} 
A filter shows a subset of the rows in the spreadsheet by only \\
showing rows that pass a given condition (test). \\
For our purposes, the Auto Filter under the Data then \\
Filter menu is sufficient. \\
Once Ramon Lavrence \\
Once you select Auto Filter, each column heading has a \\
can limit the rows that are displayed. \\
It is possible to filter on more than one column at the same \\
time.
\end{tabular} \\
\hline
\end{tabular}


\begin{tabular}{|l}
\hline Conc/usion \\
\hline \begin{tabular}{l} 
Spreadsheets are programs for storing and manipulating data \\
that is represented as a table of cells. \\
Each cell has a row number and column label which combine \\
to represent its address. Ar Ramon Lawernce \\
date, or a formula that calculates its value. \\
\begin{tabular}{l} 
Spreadsheets allow you to organize data and write formulas to \\
do computations. They are a powerful tool for data storage and \\
analysis.
\end{tabular} \\
\end{tabular}\(.\)\begin{tabular}{l} 
Page 43
\end{tabular} \\
\hline
\end{tabular}

\section*{Objectives}
-Define: spreadsheet
- Explain how cells are addressed in a spreadsheet.
-List some of the ways to select cells in a spreadsheet.
-Explain: filling
Define and explain: formula
- Explain how an aggregate function works. List some examples.
- Explain the usefulness of charts.

Define: conditional formatting
- Explain how spreadsheets can be used as a database.


\section*{What is a database?}

A database is a collection of logically related data for a particular domain.

A database management system (DBMS) is software designed for the creation and management of databases.
-e.g. Oracle, DB2, Microsoft Access, MySQL, SQL Server
Bottom line: A database is the data stored and a database system is the software that manages the data.

\section*{Key Points}
1) Databases allow for easy storage and retrieval of large amounts of information.
2) Relational databases organize data into tables consisting of rows and columns.
3) SQL is the common language to query a database for results.

\section*{Databases in the Real-World}

Databases are everywhere in the real-world even though you do not often interact with them directly.
- \(\$ 20\) billion dollar annual industry

Examples:
- Retailers manage their products and sales using a database. \(\Rightarrow\) Wal-Mart has one of the largest databases in the world!
\(\bullet\) Online web sites such as Amazon, eBay, and Expedia track orders, shipments, and customers using databases.
-The university maintains all your registration information and marks in a database that is accessible over the Internet.

Can you think of other examples?
What data do you have?

\section*{Database System Approach}


\section*{Advanced: Databases and Abstraction}

One of the major advantages of databases is they provide data abstraction. Data abstraction allows the implementation of an object to change without affecting programs that use the object through an external definition.

That is, as a database user or programmer, you do not have to worry about how the data is stored or organized.

A DBMS achieves data abstraction by allowing users to define the database and then handling all the low-level details of how to store it, retrieve it, and handle concurrent access to it.
\begin{tabular}{|l}
\hline The Relational Model: Terminology \\
\hline \begin{tabular}{l} 
The relational model organizes database information into \\
tables called relations. \\
The relational model was developed by E. F. Codd in 1970 and \\
is used by almost all commercial database systems. \\
Terminology: \\
A relation is a table with columns and rowence \\
An attribute is a named column of a relation. \\
A tuple is a row of a relation. \\
A domain is a set of allowable values for one or more attributes. \\
The degree of a relation is the number of attributes it contains. \\
The cardinality of a relation is the number of tuples it contains. \\
Page 8 \\
\hline
\end{tabular}
\end{tabular}

1) What is the name of the relation?
2) What is the cardinality of the relation?
3) What is the degree of the relation?
4) What is the domain of order date? What is the domain of order id?
\begin{tabular}{|l|}
\hline Databases \\
Database Properties (2) \\
\hline \begin{tabular}{l} 
Question: True or False: More than one user can use the \\
database managed by the DBMS at the same time.
\end{tabular} \\
A) true \\
B) false
\end{tabular}

\section*{Databases}

\section*{Definition Matching}

Question: Given the three definitions, select the ordering that contains their related definitions.
1) relation
2) tuple
3) attribute
A) column, row, table
B) row, column, table
C) table, row, column
D) table, column, row

\section*{Relational Keys}

Keys are used to uniquely identify a tuple in a relation.

A superkey is a set of attributes that uniquely identifies a tuple in a relation.

A key is a minimal set of attributes that uniquely identifies a tuple in a relation.

Question:
What is a key to identify a student in this class?

\section*{Databases \\ Keys and Superkeys (2)}

Question: True or false: It is possible to have more than one key for a table and the keys may have different numbers of attributes.
A) true
B) false


Page 19

A Simple Query Language:
Keyword Searching
Keyword (or English-language) search allows a user to type keywords or phrases and returns a best answer estimate.


This works fairly well for web searches, although we lack precision. Precision is required for many applications.
Example: How would you return all employees with salary greater than 30,000 using keyword search?
\begin{tabular}{|c|}
\hline SQL Queries \\
\hline \begin{tabular}{l}
A query in SQL has the form: \\
SELECT (list of attributes) \\
FROM (list of tables) \\
WHERE (filter conditions)
\end{tabular} \\
\hline \begin{tabular}{l}
Notes: \\
1) Separate the list of attributes and list of tables by commas. \\
-2) The " \(\star\) " is used to select all attributes.
\end{tabular} \\
\hline Page 23 \\
\hline
\end{tabular}


\section*{SQL Overview}

Structured Query Language or SQL is the standard database query language to retrieve exact answers.
\(\bullet S Q L\) is a declarative language (non-procedural). A SQL query specifies what to retrieve but not how to retrieve it.
\(\bullet\) SQL is used by Microsoft Access.

Some basic rules for SQL statements:
\(\bullet 1\) ) There is a set of reserved words that cannot be used as names for database fields and tables.
\(\Rightarrow\) SELECT, FROM, WHERE, etc.
-2) SQL is generally case-insensitive.
\(\Rightarrow\) Only exception is string constants. 'FRED' not the same as 'fred'.
3) SQL is free-format and white-space is ignored.

\section*{SQL}

Retrieving Only Some of the Columns


\begin{tabular}{|lll|l|l|l|}
\hline DatabaSeS \\
Projection (2)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{One Table Query Example Retrieving Only Some of the Rows} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
The selection operation creates a new table with some of the rows of the input table. A condition specifies which rows are in the new table. The condition is similar to an if statement. \\
Example: Return the projects in department ' D2':
```

SELECT pno, pname, budget, dno
FROM proj
WHERE dno = 'D2';

```
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Proj Relation} & esu & & & \\
\hline pno & prame & budget & dno & pno & pname & budget & dno \\
\hline P1 & Instruments & 150000 & D1 & P2 & DB Develop & 135000 & D2 \\
\hline P2 & DB Develop & 135000 & D2 & P4 & Maintenance & 310000 & D2 \\
\hline P3 & Budget & 250000 & D3 & P5 & CAD/CAM & 500000 & \\
\hline P4 & M aintenance & 310000 & D2 & & & & \\
\hline P5 & CAD/CAM & 500000 & D2 & & & & \\
\hline \multicolumn{8}{|l|}{Algorithm: Scan each tuple and check if matches condition in WHERE clause. Page 29} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Databases Projection} \\
\hline \begin{tabular}{l}
Question: Given this table and the \\
SELECT eno, ename, salary \\
FROM emp
\end{tabular} & & & & \\
\hline \multirow[t]{2}{*}{How many columns are returned?} & \multicolumn{4}{|c|}{Emp Relation} \\
\hline & eno & ename & & salary \\
\hline & E1 & J. Doe & EE & 30000 \\
\hline A) 0 & E2 & M. Smith & SA & 50000 \\
\hline B) 1 & E3 & A. Lee & ME & 40000 \\
\hline B) 1 & E4 & J. Miller & PR & 20000 \\
\hline C) 2 & E5 & B. Casey & SA & 50000 \\
\hline D) 3 & E6 & L. Chu & EE & 30000 \\
\hline D) & E7 & R. Davis & ME & 40000 \\
\hline E) 4 & E8 & J. Jones & SA & 50000 \\
\hline \multicolumn{5}{|r|}{Page 26} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{SQL Projection Questions} \\
\hline \multicolumn{4}{|c|}{WorksOn Relation} & \multirow[b]{3}{*}{Write the SQL statement that:} \\
\hline eno & pno & resp & dur & \\
\hline E1 & P1 & Manager & 12 & \\
\hline E2 & P1 & Analyst & 24 & 1) Returns only attributes resp and dur. \\
\hline E2 & P2 & Analyst & 6 & 2) Returns only eno. \\
\hline E3 & P3 & Consultant & 10 & 3) Returns only pno. \\
\hline E3 & P4 & Engineer & 48 & \\
\hline E4 & P2 & Programmer & 18 & List the number of result rows and columns in \\
\hline E5 & P2 & Manager & 24 & each case. \\
\hline E6 & P4 & Manager & 48 & \\
\hline E7 & P3 & Engineer & 36 & \\
\hline E7 & P5 & Engineer & 23 & \\
\hline E8 & P3 & Manager & 40 & \\
\hline \multicolumn{5}{|r|}{Page 28} \\
\hline
\end{tabular}

\section*{Retrieving Only Some of the Rows Selection Conditions}

The condition in a selection statement specifies which rows are included. It has the general form of an if statement.

The condition may consist of attributes, constants, comparison operators (<, >, =, ! =, <=, >=), and logical operators (AND, OR, NOT).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{SQL Selection Examples} \\
\hline \multicolumn{4}{|c|}{Emp Relation} & \multicolumn{5}{|l|}{SELECT eno ename title, salary} \\
\hline eno & ename & title & salary & \multicolumn{5}{|l|}{SELECT eno, ename, title, salary FROM emp} \\
\hline E1 & J. Doe & EE & 30000 & WHERE & alary > & & OR & \\
\hline E2 & M. Smith & SA & 50000 & & title = & 'PR' & & \\
\hline E3 & A. Lee & ME & 40000 & & & & & \\
\hline E4 & J. Miller & PR & 20000 & eno & ename & title & salary & \\
\hline E5 & B. Casey & & 50000 & E2 & M. Smith & SA & 50000 & \\
\hline E6 & L. Chu & EE & 30000 & E3 & A. Lee & ME & 40000 & \\
\hline E7 & R. Davis & & 40000 & E4 & J. Miller & PR & 20000 & \\
\hline \multirow[t]{2}{*}{E8} & J. Jones & & 50000 & E5 & B. Casey & SA & 50000 & \\
\hline & & \multicolumn{2}{|l|}{} & E7 & R. Davis & ME & 40000 & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SELECT * } \\
& \text { FROM emp } \\
& \text { WHERE title = 'EE' }
\end{aligned}
\]}} & E8 & J. Jones & SA & 50000 & \\
\hline & & & & & & & & \\
\hline \multicolumn{4}{|l|}{eno ename title salary} & & & & & \\
\hline E1 & J. Doe & EE & 30000 & & & & & \\
\hline E6 & L. Chu & EE & 30000 & & & & & Page 31 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Databases
Selection & & & 22 - Dr. & amon Lawrence \\
\hline \multicolumn{5}{|l|}{Question: Given this table and the query:} \\
\hline \multirow[t]{5}{*}{} & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{Emp Relation}} \\
\hline & & & & \\
\hline & eno & ename & title & salary \\
\hline & E1 & J. Doe & EE & 30000 \\
\hline & E2 & M. Smith & SA & 50000 \\
\hline \multirow[t]{2}{*}{A) 0} & E3 & A. Lee & ME & 40000 \\
\hline & E4 & J. Miller & PR & 20000 \\
\hline B) 1 & E5 & B. Casey & SA & 50000 \\
\hline \multirow[t]{2}{*}{C) 2} & E6 & L. Chu & EE & 30000 \\
\hline & E7 & R. Davis & ME & 40000 \\
\hline D) 3 & E8 & J. Jones & SA & 50000 \\
\hline & & & & Page 32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Databases} \\
\hline \multicolumn{5}{|l|}{Selection} \\
\hline \multicolumn{5}{|l|}{Question: Given this table and the query:} \\
\hline \multicolumn{5}{|l|}{SELECT *} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
FROM emp \\
WHERE salary > 50000 or title='PR'
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Emp Relation} \\
\hline \multirow[t]{3}{*}{How many rows are returned?} & eno & ename & title & salary \\
\hline & E1 & J. Doe & EE & 30000 \\
\hline & E2 & M. Smith & SA & 50000 \\
\hline \multirow[t]{2}{*}{A) 0} & E3 & A. Lee & ME & 40000 \\
\hline & E4 & J. Miller & PR & 20000 \\
\hline B) 1 & E5 & B. Casey & SA & 50000 \\
\hline \multirow[t]{2}{*}{C) 2} & E6 & L. Chu & EE & 30000 \\
\hline & E7 & R. Davis & ME & 40000 \\
\hline D) 3 & E8 & J. Jones & SA & 50000 \\
\hline & & & & Page 33 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{COSC 122 - Dr. Ramon Lawrence} \\
\hline \multicolumn{5}{|l|}{Databases} \\
\hline \multicolumn{5}{|l|}{Selection} \\
\hline \multicolumn{5}{|l|}{Question: Given this table and the query:} \\
\hline \multicolumn{5}{|l|}{SELECT *} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
FROM emp \\
WHERE salary > 50000 or title='PR'
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Emp Relation} \\
\hline \multirow[t]{3}{*}{How many columns are returned?} & eno & ename & title & salary \\
\hline & E1 & J. Doe & EE & 30000 \\
\hline & E2 & M. Smith & SA & 50000 \\
\hline \multirow[t]{2}{*}{A) 0} & E3 & A. Lee & ME & 40000 \\
\hline & E4 & J. Miller & PR & 20000 \\
\hline B) 2 & E5 & B. Casey & SA & 50000 \\
\hline \multirow[t]{2}{*}{C) 3} & E6 & L. Chu & EE & 30000 \\
\hline & E7 & R. Davis & ME & 40000 \\
\hline D) 4 & E8 & J. Jones & SA & 50000 \\
\hline & & & & Page 34 \\
\hline
\end{tabular}

\section*{One Table Query Example Retrieving Some of the Rows/Columns}

Return the employee name and salary of all employees whose title is ' EE '
\[
\begin{aligned}
& \text { SELECT ename, salary } \\
& \text { FROM emp } \\
& \text { WHERE title = 'EE'; }
\end{aligned}
\]

Emp Relation

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{One Table Query Examples} \\
\hline \multicolumn{2}{|l|}{Return the birth date and salary of employee 'J. Doe':
```

SELECT bdate, salary
FROM emp
WHERE ename = 'J. Doe'

```} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Return all information on all employees:
\(\qquad\) \\
FROM emp
\end{tabular}} \\
\hline ```
SELECT eno, pno, hours
FROM workson
WHERE hours > 50
``` & f hours \\
\hline & Page 37 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{Cosc 122 - Dr. Ramon Lawrence} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Databases \\
Projection and Selection (2)
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Question: Given this table and the query} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
SELECT eno, salary \\
FROM emp \\
WHERE salary >= 40000 \\
Emp Relation
\end{tabular}} \\
\hline \multirow[t]{3}{*}{What is the cardinality of the result?} & eno & ename & title & salary \\
\hline & E1 & J. Doe & EE & 30000 \\
\hline & E2 & M. Smith & SA & 50000 \\
\hline \multirow[t]{2}{*}{A) 2} & E3 & A. Lee & ME & 40000 \\
\hline & E4 & J. Miller & PR & 20000 \\
\hline B) 3 & E5 & B. Casey & SA & 50000 \\
\hline \multirow[t]{2}{*}{C) 4} & E6 & L. Chu & EE & 30000 \\
\hline & E7 & R. Davis & ME & 40000 \\
\hline D) 5 & E8 & J. Jones & SA & 50000 \\
\hline & & & & Page 39 \\
\hline
\end{tabular}

\section*{SQL Projection/Selection One Table Questions}

Relations:
emp (eno, ename, bdate, title, salary, supereno, dno)
proj (pno, pname, budget, dno)
dept (dno, dname, mgreno)
workson (eno, pno, resp, hours)
1) Returns all employees making more than \(\$ 50,000\).
2) Show the WorksOn records with less than 20 hours but more than 10 hours.
3) Return only the pno and dno for each project.
4) Return the name for each employee in department 'D1'.
5) Challenge: Display the employees who make less than
\(\$ 40,000\) or have title 'EE' and are born after June 1, 1970.
-Dates are in YYYY-MM-DD format. e.g. '1970-06-01' Page 40
\begin{tabular}{l}
Joín \\
\hline \hline A join combines two tables into a single table. \\
If the join has no condition that specifies which rows are in the \\
result, all possible combinations of rows are in the result. \\
This is called a Cartesian or cross product. \\
If table \(R\) has \(N\) rows and \(X\) columns and table \(S\) has \(M\) rows \\
and \(Y\) columns, then there are \(N * M\) rows and \(X+Y\) columns in \\
the cross product result. \\
In SQL, a cross product is done automatically if you put more \\
than one table in the FROM clause and do not specify a \\
condition on how to combine them. \\
In most cases, this is NOT what you want to do! \\
In 41
\end{tabular}

\begin{tabular}{|l|}
\hline Databases \\
Cartesian Product \\
\hline \begin{tabular}{l}
Question: R is a relation with 10 rows and 5 columns. S is a \\
relation w with 8 rows and 3 colums. \\
What is the degree and cardinality of the cartesian product? \\
A) degree \(=8\), cardinality \(=80\) \\
B) degree \(=80\), cardinality \(=8\) \\
C) degree \(=15\), cardinality \(=80\) \\
D) degree \(=8\), cardinality \(=18\)
\end{tabular}
\end{tabular}

\section*{Equijoin in SQL}

There are two ways of using equijoin in SQL.

In where clause:
```

SELECT *

```

FROM WorksOn, Proj

WHERE WorksOn.pno = Proj.pno

In FROM clause:

SELECT *

FROM WorksOn JOIN Proj ON WorksOn.pno = Proj.pno

Can simplify syntax by using alias to shorten table name:
```

SELECT *
FROM WorksOn AS W, Proj AS P

```

WHERE W.pno = P.pno Page 46

\section*{Join Query Examples}

Return the department names and the projects in each department:
\[
\begin{aligned}
& \text { SELECT dname, pname } \\
& \text { FROM dept, proj } \\
& \text { WHERE dept.dno = proj.dno }
\end{aligned}
\]

Return the employees and the names of their department:
\[
\begin{aligned}
& \text { SELECT ename, dname } \\
& \text { FROM emp JOIN dept ON emp.dno=dept.dno }
\end{aligned}
\]

Return all projects who have an employee working on them whose title is 'EE':

FROM emp, proj, workson
WHERE emp.title = 'EE' and workson.eno=emp.eno and workson.pno = proj.pno

\begin{tabular}{|c|}
\hline More Advanced Querying \\
\hline \begin{tabular}{l}
There are many more queries that we can ask a database: \\
-compute expressions and functions \\
- group data by value and meaning \\
©compute summary (aggregate) functions (max, min, sum, etc.) \\
-subqueries (queries within queries) \\
We will not study the notation for this advanced querying.
\end{tabular} \\
\hline Page 51 \\
\hline
\end{tabular}
Putting it A// Together
The steps to write an English query in SQL are:
1) Find the columns that you need and put in SELECT clause.
2) List the tables that have the columns in the Fr. Ramon Lawrence
there is more than one, join them together.
3) If you must filter rows, add a filter criteria in WHERE clause. If
Example: List project name and budget where a 'Manager' is
working on the project.
SELECT pname, budget
FROM WorksOn, Proj
WHERE resp='Manager' AND Workson. pno = Proj.pno
Page 52

\section*{Microsoft Access Querying Basics}
1) Projection is performed by selecting the fields in the output in the field row in the table at the bottom of the screen.
2) Selection is performed by entering the condition in the criteria box. The criteria applies to the field in that column.
3) The tables used are added to the query by the Show Table... option.
4) Joins (based on relationships) are often automatically added, but if not, you can add them by selecting the join field in one table, holding the mouse button, then dragging to the join field in the other table.

\section*{Microsoft Access Query Views}

You may view your data, your query graphically, or your query in SQL.

\section*{Practice Questions}

Relational database schema:
emp (eno, ename, bdate, title, salary, supereno, dno)
proj (pno, pname, budget, dno)
dept (dno, dname, mgreno)
workson (eno, pno, resp, hours)
1) Return the project names that have a budget \(>250000\).
2) List all project names in department with name 'Accounting'.
3) For employee 'M. Smith' list the project number and hours for all projects that he worked on.
4) Return a list of all department names, the names of the projects of that department, and the name of the manager of each department.
\begin{tabular}{l}
Objectives \\
\hline Define: database, database system \\
Explain how a DBMS achieves data abstraction. \\
Define: relation, attribute, tuple, domain, degree, cardinality, \\
superkey, key \\
Given a relation, know its cardinality, degree, domains, and keys. \\
Given a relational schema and instance be able to translate \\
very simple English queries into SQL. \\
\end{tabular}

\section*{Key Points}
1) Information technology improves our lifestyle and our society, but also introduces challenges related to its ethical use and management.
2) We must be aware of potential violations of our privacy and our computer by malicious programs and companies.
3) Copyright protects intellectual property from unauthorized distribution and modification.

\section*{Implications of Technology}

Information technology, like any technological advance, can be used both for the benefit and the destruction of society.

As we become increasingly reliant on information technology, it is important that it be used appropriately and ethics guide its development and use.

As individuals, information technology is pervasive in our lives. Although this leads to new opportunities and experiences, we also must deal with the associated problems as well.

\section*{Email Benefits and Challenges}

Email and instant/text messaging are the most commonly used electronic communication methods.

Text conversation introduces some issues:
Conveying emotion - happy faces (emoticons) sometimes used
- Emphasis - hard to highlight what is important without other cues
-Conversational pace - asynchronous nature makes dialog hard
Ambiguity - poor formatting causes misinterpretations
\(\bullet\) Flame-a-thons - due to impersonal nature, harsh and inflammatory messages are easier to write.
-Spam - junk messages sent by automatic programs
- Size limits - condense dialog and introduce ambiguities
- History - can be kept forever and may be public
COSC 122 - Dr. Ramon Lawrence

\section*{Internet Etiquette}
Internet etiquette are rules that civilized people use when communicating and interacting on the Internet that makes the interactions more personable, enjoyable, and acceptable.
- Act as if you are there in person and that you were being recorded for everyone to see.
Some email etiquette rules:
- Keep messages short and on a single topic.
- Always include context (question with your answer).
- Use an automated reply if unable to answer for a period of time.
- Answer a backlog of emails in reverse order.
- Get the sender's permission before forwarding email.
-Use targeted distribution lists (don't send that joke to everyone).
Do not write in all capital letters.
-Emails should still look "professional".

\section*{Dealing with the Uncivilized}

As in any society, people do not follow the rules all the time. The best policy is to show the respect and grace in a virtual world that you would in the real-world.
\(\bullet\) No harassment, slander, rudeness, etc.
- Remember: The virtual world is not anonymous.

Dealing with spam email and companies is mostly out of your control. To avoid spam, limit how you give out your e-mail address and do not post it on a web site.
- Use real-world and technical savvy to detect scams and marketing. Watch for non-professional e-mails, strange e-mail addresses, etc. Be very careful with personal data.
-Aside: Why do spam e-mails have many spelling mistakes? \(\Rightarrow\) To avoid spam filters, recognizing common spam keywords. Page 8

\section*{Malicious Threats Viruses and Worms}

Viruses and worms are programs that are designed to negatively effect your computer. Often they are used to destroy software or steal personal data.
- A virus is a program that "infects" another program by embedding a copy of itself. When the infected program runs, the virus copies itself and infects other programs.
\(\bullet\) A worm is an independent program that copies itself across network connections.
\(\bullet\) A trojan is a program that hides inside another useful program, and performs secret operations.
\(\Rightarrow\) May record keystrokes or other sensitive data or load malicious software.
An exploit is a program that takes advantage of a security hole.
\(\Rightarrow\) Backdoor access enters computer and reconfigures it for remote control.
Page 9

\section*{Zombies!!}

Writing viruses and breaking into computer systems is a big business. Money can be made by stealing passwords and data, using computers to conduct activities (click on advertising, send spam, etc.), or conduct attacks on others.

Zombies - Infected, controlled computers Botnet - Group of zombies working together
You are most likely to get bitten and infected by social engineering tricks rather than technical reasons!
\begin{tabular}{|l}
\hline Inte/lectual Property \\
\hline \begin{tabular}{l}
Intellectual property is any human creation like a photograph, \\
music, textbooks, cartoons, etc. \\
Software is licensed in a form of leasing instead of buying. The \\
license gives you the right to use the software personally, but \\
not sell or give it away. \\
Shareware software allows you to downon Lawences \\
for free, then pay the designer if you use it (honor system). \\
Ethics: It is very tempting to steal intellectual property \\
(software, music, videos) on the Internet due to the availability \\
of copying and distribution sites and tools. \\
It is still STEALING, even in a digital, virtual world.
\end{tabular} \\
\hline
\end{tabular}

\section*{Copyright}

A person automatically owns copyright of what he creates in the U.S., Canada, and most nations. Copyright applies to almost all artistic works (books, music, video, art, etc).

The copyright protects the owner's right to:
- Make a copy of the work
-Use a work as the basis for a new work (derivative work)
-Distribute or publish the work, including electronically
-Publicly perform and display the work
You are free to view or read anything on the Internet, but you need the copyright holder's permission to re-publish, modify, or re-distribute.

Page 14
\begin{tabular}{l}
Copyright and Free Use \\
\hline \begin{tabular}{l}
The concept of Fair Use allows use of copyrighted material for \\
educational or scholarly purposes, to allow limited quotation for \\
review or criticism, and to permit parody. \\
Fair Use normally applies to distribution that is non-commercial. \\
There are large fines for violating copyright laws, especially for Ramon Lawencer \\
commercial purposes. \\
Software is protected under the Software Copyright Act of 1980 \\
in the United States. \\
Page 15 \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|l}
\hline Survey \\
Virus Writing \\
\hline \begin{tabular}{l}
Question: Would you write a destructive virus if you were \\
absolutely sure you would not be caught? \\
A) yes \\
B) no \\
C) depends on the destructive effect \\
\\
\end{tabular} \\
\end{tabular}
\begin{tabular}{|l|}
\hline Survey \\
Intellectual Property - Music \\
\hline Question: It is acceptable to copy or download music without \\
paying ... \\
A) never \\
B) sometimes depending on circumstances \\
C) always
\end{tabular}

\section*{Survey Intellectual Property - Frequency}

Question: I have copied/downloaded music, movies, or software without paying ...
A) never
B) in my lifetime
C) in the last year
D) in the last week
E) right now ... during class

\section*{Survey \\ Intellectual Property - Reasons}

Question: My major reason for copying/downloading music/software/movies is:
A) I do not do it.
B) cost
C) rich media companies/entertainers
D) convenience
E) other

\section*{Open Discussion}

In small groups, discuss two questions:
1) What impacts (positive and negative) has technology had on your life?
2) What impacts (positive and negative) has technology had on society and our planet?
\begin{tabular}{|l}
\hline Conc/usion \\
\hline IT benefits society in numerous ways, but requires ethical \\
management and use similar to other technologies. \\
Malicious programs such as viruses and worms enter your \\
computer through an email, web site, or infected program. \\
Anti-virus software prevents some infection, but the computene \\
user is the ultimate line of defense. \\
Ethics apply to the development of software to ensure that \\
safety is considered when building software that may have \\
negative effects if failures occur. \\
Copyright protects intellectual property, and applies on the \\
Internet even with the existence of tools and sites that allows \\
users convenient ways to steal digital data.
\end{tabular}

\section*{Amazon.com amazon.com \\ Overview}

Amazon.com is America's largest online retailer and sells books, DVDs, software, and other products.
-Headquartered in Seattle, Washington.
\(\bullet\) Founded by Jeff Bezos in 1994.
- "Amazon" is named after the world's largest river. Since 2000, Amazon's logo has an arrow from A to Z, representing customer satisfaction (as it forms a smile).
Amazon's Canadian site comes from the US, as it was legally prevented until March 2010 of operating any fulfillment centers in Canada. Products ship from Canada Post's Mississauga, ON.

Amazon provides technology and online hosting and services for many other retailers. Affiliates can sell through Amazon's system and link to Amazon's product database. Page 3

\section*{Key Points}
1) Use our knowledge to understand how popular applications and systems work: Amazon, Facebook, Twitter, BitTorrent, iPhone.

\begin{tabular}{|c|}
\hline Twitter Overview \\
\hline \begin{tabular}{l}
Twitter is a social networking and blogging service that allows users to send and read user messages called tweets. \\
- Tweets are displayed on an user's page and can be up to 140 characters long (due to SMS compatibility). \\
-Users may subscribe (followers) to other user tweets. \\
-Tweets can be sent via the website, external applications (for smartphones/PCs), and the Short Message Service (SMS). \\
\(\bullet\) Service is free but may be charged to use SMS or phone fees. \\
-Created in 2006 by Jack Dorsey. \\
-Currently has more than 500 million users and over 350 million tweets per day.
\end{tabular} \\
\hline Page 9 \\
\hline
\end{tabular}

\section*{BitTorrent \\ Overview}

BitTorrent is a peer-to-peer file sharing protocol for data distribution. It is estimated to be the majority of Internet traffic.
Basic idea: Instead of downloading a large file from one source, the file is downloaded in pieces from many sources and re-assembled. This improves performance and reliability.

\section*{How it works:}
-1) A user creates a torrent descriptor file of the file to be shared. The file itself is put on a BitTorrent "seed" node and divided into pieces.
2) Another user downloads the torrent descriptor file and begins to download the file pieces. It may acquire pieces from other peers that had previously downloaded the file. Once a peer has the complete file, it can function as a seed.

\section*{Facebook and Google Advertising}

Facebook and Google make billions of dollars of revenue from advertising.
Facebook advertising is primarily banner advertising (display ads) and advertising in news feed. A company gets paid for banner advertising based on the number of displays ("impressions") and the number of user clicks ("click throughs").
Google advertising is primarily as sponsored results. Google gets paid each time a user clicks on a sponsored link.
Click through rates may be as low as 0.05\% (Facebook) and the costs per click are on a bid system. Each click may only represent \(\$ 0.10\) to \(\$ 0.50\) of revenue.
Companies make money due to the billions of page views and clicks.

\section*{iPhone Overview}

The iPhone is a smartphone manufactured by Apple that supports voice, text, browsing, email, and Wi-Fi. Distinctive features include its multi-touch screen, virtual keyboard, and thousands of third-party applications ("apps").

Smartphones are mini-computers that have an operating system capable of running programs both within and outside of a web browser.
- A major battle for market share between operating systems: Android, iPhone, Microsoft, Blackberry.

These devices are chosen more for their program capabilities and user interface features than phone service provider plans.
\begin{tabular}{|l}
\hline iPhone \\
How it Works - Apps \\
\hline 1) An iPhone application is built by a developer in the \\
Objective-C programming language and compiled into a binary. \\
Each smartphone platform supports a different language: \\
RIM/Android - Javana Lawence \\
2) The application is verified by Apple, and if it passes, is \\
loaded onto the App store. \\
3) Users search the store for applications and download and \\
run the binary file on their device. An App runs on the device \\
directly rather than in the browser. \\
What we have learned: \\
Basic programming skills (can be extended to develop apps) \\
\(\Rightarrow\) By 3rd year Cs (or time on your own), you could do it. \\
\(\rightarrow\) Hardware components and how computer works/run programs \\
Components of applications and user interfaces
\end{tabular}

\section*{Conclusion}

We have investigated how some of the most popular systems and applications work. Each system requires creativity and a significant software engineering effort to design and build it.

We saw how the concepts we have learned in programming, computer systems, and networking/Internet are used in these systems and the research/technical challenges being faced.

Operational systems are continually improved, fixed for errors, and must remain working all the time. It takes considerable resources and people to operate.
The popular systems typically started from basic ideas and were expanded over time. It has never been easier to create a system and scale it up to millions of users.

\section*{Objectives}
-Understand some of the ideas behind common applications and systems and how it relates to the concepts discussed in the course.

\section*{Overview}

Most of the information in the real world is not digital by nature.

Although we saw some reasonable encodings for numbers and characters, it is a little more complex to store images and sounds on a computer.

Images and sound are analog by nature. To convert to digital, we must sample the original, encode it, and then compress it to make it usable.

The increasing power of computers has made the virtual reality that can be produced more and more realistic.

\section*{Color Question}

Question: What is the best description of color code: \#B3009F?
A) a shade of purple
B) a shade of yellow
C) a shade of blue
D) a shade of green
\begin{tabular}{|l|}
\hline Color Question \\
\hline \hline Question: What is the best description of color code: \#B3009F? \\
A) a shade of purple \\
B) a shade of yellow \\
C) a shade of bluen Lawerne \\
D) a shade of green \\
\end{tabular}

\section*{Key Points}
1) It is possible to digitize the naturally analog information of sound, images, and video.
2) Due to the large size of digitized images/video, compression is needed to make it more efficient to use and store the information.

\section*{Review: Digitizing Color}

Recall that computers represent different colors by giving the intensities of red, green, and blue (RGB).
- Each red, green, and blue value was a number from 0 to 255
that we can represent in decimal or hexadecimal.
-Black is no color (all values are 0).
-White is full intensity of RGB (all values are 255).

\section*{Digitizing Sound}

An object creates sound by vibrating in a medium such as air.
Vibrations push the air and pressure waves emanate from the object and vibrate our eardrums.

The force, or intensity of the push determines the volume.
The frequency (number of waves per second) is the pitch.

Time
Converting Analog Sound to Digital
Sound is analog (continuous) by nature.
To digitize sound into bits, we need to record with a binary
number the amount by which the wave is above or below the Lawrence
zero (positive or negative sound pressure)
However, we cannot possibly record a value at every point in
time, so we use sampling to collect information at certain
intervals (points in time).
The sampling rate is the number of measurements per
second. The higher the rate, the more accurate the digitization
(but more space is required).

Page 7

\section*{Advantages of Digital \\ Sound Representation}

The advantages of digital representation:
-1) All digital representations can be computed on (manipulated digitally). This makes it easier to edit and change them.
2) Reproducing the data can be done exactly.
\(\Rightarrow\) Bit file can be copied without losing any information.
\(\Rightarrow\) Original and copy are exactly the same.
-3) Compression - Compression techniques such as (MP3 compression) allow for more compact representation.
\(\Rightarrow\) Remove waves that are outside range of human hearing
\(\Rightarrow\) MP3 usually gets a compression rate of 10:1.
\(\Rightarrow\) MP3 stands for MPEG level 3 ("sound track" of MPEG digital video).
wave by filling in between the digital values.
-The electrical signal is output to a speaker which converts it to a sound wave.

\section*{How Fast a Sampling Rate?}

Sampling rate should be related to the wave's frequency.
-Too slow a rate could allow waves to fit between the samples causing us to miss segments of sound.

Guideline is Nyquist Rule: Sampling rate must be at least twice as fast as the fastest frequency.

Human perception can hear sound up to \(20,000 \mathrm{~Hz}\), so 40,000 Hz sampling rate is enough.
\(\bullet\) The standard for digital audio is \(44,100 \mathrm{~Hz}\).

\section*{How Many Bits per Sample?}

How accurate must the samples be?
- Bits must represent both positive and negative values.
- The more bits, the more accurate the measurement.
- The digital representation of audio CDs uses 16 bits (records 65,536 levels, half above and half below the zero line).
\begin{tabular}{|l|}
\hline How Fast a Sampling Rate? \\
\hline \begin{tabular}{l}
Sampling rate should be related to the wave's frequency. \\
Too slow a rate could allow waves to fit between the samples \\
causing us to miss segments of sound. \\
Guideline is Nyquist Rule: Sampling rate must be at least \\
twice as fast as the fastest frequency. \\
Human perception can hear sound up to \(20,000 \mathrm{~Hz}\), so 40,000 \\
Hz sampling rate is enough. \\
The standard for digital audio is \(44,100 \mathrm{~Hz}\). \\
\end{tabular}\(.\)\begin{tabular}{l}
Page 8 \\
\hline
\end{tabular}
\end{tabular}

Cosc 122- Dr. Ramon Lawrence

\begin{tabular}{|l|l|}
\hline Digital Compression \\
\hline \begin{tabular}{l}
Question: A music digitization program provides the two \\
encodings below. Which encoding has the largest size \\
(assuming no compression)?
\end{tabular} \\
A) Sample at 50 kHz and encode 16 bits per sample & \\
B) Sample at 10 kHz and encode 32 bits per sample & \\
& \\
& \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Digital Quality \\
\hline \begin{tabular}{l}
Question: A music digitization program provides the two \\
encodings below. Which encoding has the best sound quality? \\
A) Sample at 50 kHz and encode 16 bits per sample \\
B) Sample at 10 kHz and encode 128 bits per sample \\
\\
\\
\\
\end{tabular} \\
\\
\hline
\end{tabular}

\section*{Digitizing Images and Video}

Just like sound, images and video is encoded by sampling. For images, a sample consists of how many measurements are taken over an area.
-For instance, when scanning, you can determine how many pixels (samples) per inch you will take.
-The more samples (higher pixels per inch) the finer detail the image will be encoded.

Movies are sequences of individual images.

\section*{Two Ways to Encode Digital Images}

Bitmap representation stores a 2D matrix (width \(x\) height) with a color intensity at each pixel.
- Examples: PNG, JPEG, GIF, TIFF

Vector representation describes an image as a sequence of lines or shapes each with a color.
- Examples: fonts (as scale better), Postscript (eps), PDF, Scalable Vector Graphics (svg)

Bitmap format is good for complex images and can be compressed. However, it does not scale well.
Vector representation is good for line art and text and will have smaller sizes for those types of images.

Page 16

\section*{Aside: JPEG in Digital Cameras}

Most digital cameras use some form of JPEG compression and often provide you with a setting that indicates image quality.
Smaller images (and thus more images on the camera) come at the cost of lower quality. Probably better to select high quality!

Example:
- Nikon D5000 - 12.3 megapixel sensor (\(4288 \times 2848\))
\(\bullet\) RAW format is 12 -bits per pixel: 18.45 MB (uncompressed) and 10.6 MB (compressed)
-JPEG: high quality: 5.9 MB , medium: 3.3 MB , low: 1.5 MB
-Source: Nikon
\begin{tabular}{|l|l|}
\hline Digital Compression \\
\hline Question: True or false: An MP3 performs lossy compression. \\
A) true \\
B) false \\
\\
\\
\end{tabular}

\section*{Virtual Reality: Fooling the Senses}

Input and output devices can use all senses to engage the user in the virtual reality experience.
Sound and sight we have seen already.
-Smells - it has been done, but not well.
- Taste - not really..

Touch has been increasingly used to communicate realism. Examples including vibrating controllers and interactive devices that provide motion and vibration that mimics real world cues.
-These haptic devices engage our sense of touch.

\section*{MPEG Compression Scheme}

The MPEG compression scheme follows the same idea as JPEG, but is applied to motion pictures.

Two "levels" of compression:
1) JPEG-like compression is applied to each frame.
2) Then "interframe coherency" is used so that only record and transmit the differences between one frame and the next. This results in huge amounts of compression.

\section*{Optical Character Recognition}

Optical Character Recognition (OCR) is the process of analyzing captured images to determine its contents.
- Example: Scan in a document and have the computer convert the document into a text document rather than an image.
OCR is used in other areas:
- auto-mail sorters
\(\bullet\) photo radar cameras (license plate numbers)
- handwriting recognition
- fingerprinting technology (biometrics - eye, fingerprint, etc.)

Captchas used on web sites to stop automated programs are based on the idea that humans are better at recognizing image patterns that computer algorithms.
fellaring friding.
Page 22

\section*{Advanced: The Challenges of Bandwidth and Latency}

Although images, sound, and video are represented digitally, two issues challenge the construction of a virtual reality.
-Latency is the time it takes for information to be delivered.
\(\Rightarrow\) Too long a latency period ruins the illusion as we can sense the delay.
\(\Rightarrow\) Absolute limit to how fast information can be transmitted-speed of light.
- Bandwidth is the rate at which information can be delivered
\(\Rightarrow\) Bandwidth is important as digital encodings, even with compression, consume a lot of space.
\begin{tabular}{|l}
\hline Conc/usion \\
\hline \begin{tabular}{l}
Sounds, images, and video are digitally encoding by sampling \\
the analog input and encoding each sample in bits. \\
The raw samples consume significant amounts of space, so \\
they are compressed to make them faster to process and \\
smaller to store. Re. Ramon Lawerence \\
Although increasing computer power has made virtual reality \\
more realistic, continuing work is performed on compression \\
and techniques to improve bandwidth and reduce latency. \\
\end{tabular} \\
\end{tabular}

\section*{Objectives}

Define: intensity, frequency
Define: sampling, sampling rate
-Define: Nyquist Rule
Explain the purpose of analog-to-digital and digital-to-analog converters.
- List two advantages of digital sound.
-Compare and contrast: lossy and lossless compression
-Define: JPEG, MPEG, haptic device, OCR
- Compare the difference between representing images using bitmaps or vectors.
-Define: bandwidth, latency

\section*{A Privacy Success Story So Long Tele-marketers!}

Before: The telemarketing industry's "self-policing" mechanism required individuals to write a letter or make an on-line payment to stop telemarketing calls. Individuals received numerous, unwanted calls.

Solution: The United States government set up the Do-NotCall List. Anyone on the list cannot be called by a telemarketer without incurring a fine.

Result: There are over 80,000,000 households on the list and the telemarketing industry has largely collapsed.

\section*{Key Points}
1) Privacy involves ensuring personal information is used and distributed according to a person's wishes.
2) Security encompasses the various ways for ensuring privacy and protecting digital data.
3) Security includes user identification, access privileges, and protocols and encryption.
4) Encryption encodes text so that only the intended receiver can understand it.

\section*{Privacy: Whose Information Is It?}

An interesting question about privacy relates to who "owns" information in a transaction or exchange.

For instance, when you buy groceries, does the grocery store have the right to the information about what you purchased?
-This is valuable information to the merchant as they can spot trends that help in marketing and inventory management.

Beware: If you have any sort of membership card, your purchase information can be maintained across visits to get a profile of your purchases.
- Merchants can also use your credit or debit card information.
\(\rightarrow\) Most organizations now must disclose how they will use the information and give you the right to "opt out".

Page 4

\section*{Privacy on the Internet}

The Internet is not an anonymous communication system.
\(\bullet\) User ids, cookies, and IP addresses can be used to track communications and interactions.
- Any interaction with a web site can be logged and recorded.
- Email travels (and may be logged) by numerous servers.

As with real-world communications, privacy can only be guarded with adequate security and knowledge.

The complexity of computer applications and systems makes it much harder to understand risks to privacy.
You must assume that anything you do on the web will become public even "trending".

\section*{Privacy Breaker: The Cookie}

A cookie is a small file stored on your computer by your browser by a web site that you visit.
A cookie file allows a site to identify you between visits by storing information such as your user id.

Cookies can be abused by advertisers who store them on your computer whenever you visit a site they have ads on. They can then use the user id in your cookie to detect when you visit other sites that they provide advertising for.

Browsers now give you the option of disabling cookies on a per site, individual request, or overall basis.

\section*{Your Digital Footprints}

Your Internet activities are recorded in a variety of places which results in a large digital footprint:
Browsers store: Browsing history and cache, form data, cookies, etc. Learn how to delete them or use Google Incognito mode or Anonymizer.
\(\bullet\) ISP stores: Some traffic information, bandwidth usage, potentially logs of sites visited
-Cellphone companies store: History of calls, cell phone towers used, call detail records, text message content/detail, and IP information. Some of this information is stored for over a year and is available without a warrant.

Learn how you create digital footprints and avoid being caught in the act, ending your relationship, etc.!
Identity Theft
Identity theft is the crime of posing as someone else for
fraudulent purposes.
It is too easy to get personal information for others:
from spam email or bogus web sites
from security breaches in registeremon Lawrence
from paper records including discarded documents release on the Internet
Identity theft is a growing problem because most financial
transactions are entirely automatic. Once you have the key
identifying fields for a person, a system assumes you are that
person and no manual verification is performed.

Page 9
Security is the act of keeping precious data safe and only
accessible to the correct people.
Security is a way of enforcing privacy in digital systems.
There are many different security technologies. In gentence
security involves several things:
User identification - verify system user is who they say they are
Access privileges - only allow user to access data they have
the pecurity or encryption protocol - stores or transmits data in
such a way that only users with the correct access privileges can
use it.
\begin{tabular}{l}
User Identification \\
\hline A system performs user identification to determine if the user \\
is who they claim to be. \\
The most common form of user i22 Dr. Ramon Lawrence \\
password. The user id may be user chosen or system \\
assigned. The password is chosen by the user and is private. \\
Other technologies for user identification: \\
biometrics - finger printing, voice recognition, eye scans \\
digital access cards and keys \\
The authentication system is used to verify the user id and \\
password is correct.
\end{tabular}

Page 13

\section*{Creating Good Passwords}

Your password is your only form of defense against other users accessing your data and private information.
- It is crucial to select a good one because there are techniques to "crack" passwords, especially weak ones.
Cracking passwords:
\(\bullet\) Directed guessing - use common words, names, birth dates, and other information known about the user.
-Brute force - try all possible character sequences to find the password (usually limited by denying access after a while)
Good passwords have at least 6 characters with a mixture of upper and lower case letters, numbers, and punctuation.
- It should not contain components of dictionary words or personal information.

\section*{Password}

Question: I have at least one bad password (a name, a birth date) for an important computer system that I use.
A) Yes
B) No

A good idea is to recycle passwords by rotating through a few or making slight changes to existing ones.

Question: Why can the administrator not tell me my forgotten password?
- Answer: Passwords are encrypted when stored on the computer to prevent the administrator (and others) from knowing it. Administrators are only allowed to reset a password.

\section*{Encryption And Decryption Terminology}

An encryption system (protocol) converts data into a form that cannot be understood by anyone but the intended user.
- Encryption transforms a data representation so it is no longer understandable to users without the decryption key.
- Decryption converts an encrypted data representation into its original form, usually using a key or private information.

Cleartext or plaintext is the information before encryption. Cipher text is the information in encrypted form.

A cryptosystem is a combination of encryption and decryption methods.
A one-way cipher is an encryption system that cannot be easily reversed (used for passwords).

Page 18

\begin{tabular}{|l|l|}
\hline Security & \\
Caesar Cipher \\
\hline Question: Decrypt the following Camon Lawrence \\
SLFN D! \\
A) PICK A! & \\
B) VOIQ G! & \\
C) PICK G! & \\
D) PICK D! & \\
\hline
\end{tabular}

\section*{RSA Public Key Cryptosystem Selecting a Key}

The RSA public key cryptosystem relies on prime numbers.
Any number can be factored into primes in only one way.

A key is chosen with special properties:
\(\bullet\) Must be the product of two different prime numbers p and q .
\(\bullet p\) and \(q\) must be about 64 or 65 digits long to produce a 129digit public key.
\(\leftrightarrow p\) and \(q\) must also be 2 greater than a multiple of 3 .
If \(p\) and \(q\) are kept secret, the code cannot be cracked.
- If the key is large enough, factoring to find \(p\) and \(q\) can't be done in any reasonable amount of time even by software.

\section*{System Backup}

A system backup is a copy of valuable data and software that is used to restore a failed system.

Performing regular system backups is important, even for personal data, that may get lost due to system and natural disasters.

Mission-critical data is frequently backed up to multiple different sites to handle major natural disasters.

System redundancy is a good thing to insure the system continues to operate properly. Redundancy can be in the form of software backups or hardware components (multiple drives).

Page 25

\section*{Backing Up a Personal Computer}

What to backup:
- All personal data including documents, pictures, and music.
- Software settings such as Internet favorites.
\(\bullet\) Do not backup operating system or programs as they can be re-installed from source CDs.

How to backup:
Simple: Use a duplicate device such as a USB key or extra hard drive and copy files to it periodically.
\(\bullet\) Offsite: Burn a CD or DVD with files and store in another place.
-Online: Use cloud services (DropBox, Google).
-Sophisticated: Install and configure backup software that regularly saves data to another drive or CD/DVD.
Backup

Question: The last time I backed up the important files on my computer or laptop was...
A) Last week
B) Last month
C) Last semester
D) Last year
E) Never ... do you mean the computer can lose my files?

\section*{Conclusion}

Preserving our privacy is especially important in our digital world because of the amount of information collected and the simplicity that it can be exchanged.

Security protocols and systems are designed to restrict access to systems and data to the appropriate individuals.
-Security involves user identification (authentication system), access privileges (access control system), and encryption.
\(\bullet\) We must use good passwords to protect our privacy.

Various encryption protocols provide data security. RSA public encryption is a strong encryption scheme.
We must backup our data and system in addition to securing it.

\section*{Objectives \\ \(\rightarrow\) Discuss some issues with maintaining privacy in a digital world. \\ -Define cookie and explain how it can invade your privacy. \\ -Define identity theft and list some precautions to avoid it. \\ Define security and list three components of security. \\ -Define: user identification, access privilege, authentication system, access control system \\ - Define: encryption system, encrypt, decrypt, plain text, cipher text, cryptosystem, one-way cipher \\ -Draw a diagram and explain how encryption/decryption works. \\ -Be able to encode and decode a Caesar cipher. \\ - Explain the key idea between public (RSA) key encryption. \\ -Define: system backup, redundancy}

\section*{Key Points}
1) Computers can demonstrate "artificial intelligence" but cannot yet mimic human creativity.
2) Game trees and search strategies are used to create the intelligence in games.
3) Scientists use big-Oh notation to analyze and compare the performance of algorithms.
4) There exists some problems where there is no efficient solution or no solution at all.

\section*{Can Computers Think?}

Alan Turing posed the Turing Test to evaluate if a computer can mimic a human. The Turing Test:
\(\bullet\) To identical rooms labeled A and B are connected electronically to a judge who can type questions directed to the occupant of either room. A human being occupies one room, and the other contains a computer. The judge's goal is to decide, based on the questions asked and the answers received, which room contains the computer. If after a reasonable period of time the judge cannot decide for certain, the computer can be said to be intelligent.
- The computer is intelligent if it acts enough like a human to deceive the judge.
The test does not define thinking, intelligence, awareness or focus on any specific ability.

Page 4

\section*{Acting Intelligently?}

Eliza is a system developed by MIT researcher Joseph Weizenbaum to carry on a conversation as though she were a psychotherapist.
- The software used word clues for answers but did not understand the meaning so it was not intelligent.
Example:
User: I'm depressed.
Doctor: Why are you depressed?
User: My mother is not speaking to me.
User. My mother is not speaking to
Doctor: Tell me about your mother.
Usector: Tell me about your mother.
User: She doesn't want me to major in engineering.
User: She do
Doctor: No?
User: No, she wants me to go into medicine

Computational power will go beyond that of the human brain in 50 years.
Outstanding challenge is modeling complexity and intelligence in software.

Page 5

\section*{Survey \\ Computer Intelligence}

Question: I believe a computer will behave like a human ...
A) never
B) in my lifetime
C) within 50 years
D) within 20 years
E) within 10 years

\section*{Survey \\ Computers and Humanity}

Question: It is a good thing if computers/robots become as intelligent as humans and develop/display emotions.
A) Strongly Agree
B) Agree
C) Neutral
D) Disagree
E) Strongly Disagree
Artificial Intelligence

Artificial intelligence (AI) refers to the ability of a computer to mimic human intelligence in certain situations.

To exhibit intelligence, the computer has to "understand" a complex situation and reason well enough to act on its understanding.

One example of Al is computer intelligence in playing games such as chess and checkers.

COSC 122 - Dr. Ramon Lawrence

\section*{Game Intelligence}

For a computer to play a game against a human opponent, it must make intelligent decisions on its moves.

Strategy games such as checkers and chess have been targeted games for computing "artificial intelligence".

Even video games require the computer to determine strategies, even though the decision making is less complex.
-This includes games such as role-playing games and strategy/conquest games.

\section*{Game Playing Mini-max Strategy}

The majority of game playing systems employ something called a mini-max strategy.
\(\rightarrow\) The basic idea in a mini-max strategy is that you determine a move which maximizes your potential to win the game and minimizes your opponent's potential to win the game.
The mini-max strategy consists of three components:
\(\bullet\) Move generator - determine your possible moves
-Board evaluator - evaluate the desirability of each move
- Mini-max procedure - determine an efficient way to search through all the possible moves that you can perform
All of these components use or work upon a game tree.
\(\bullet\) A game tree stores, and allows the mini-max procedure to manipulate, the possible moves that can be made.

\section*{Move Generator \\ Tic-Tac-Toe}

Creating a complete game tree starting from the empty state board for Tic-Tac-Toe turns out to be more complex than you might first expect:
-The game tree contains approximately \(\mathbf{5 5 0 , 0 0 0}\) nodes.
\(\Rightarrow\) Easy for a computer to handle, but not insignificant.
For more complex games, the complete game tree is effectively unmanageable because the number of possible nodes in the game tree is unbelievably large.
- Therefore, we will not want to construct the entire game tree when making a decision, but rather only construct and search the most "promising" parts of the game tree.
Heuristics and pruning are used to only evaluate the most likely beneficial moves.

\section*{A Simple Game} Tic-Tac-Toe

A good way to look at structures and algorithms that are capable of playing games of pure skill is by examining a simple game like Tic-Tac-Toe (also called x's and o's).

Tic-Tac-Toe
- A game of pure skill
\(\Rightarrow\) No element of chance
-Can program Tic-Tac-Toe by "looking" for forced moves, traps, and patterns.
\(\Rightarrow\) Careful case by case analysis
- Can be done because of the relatively few cases possible

\section*{Move Generator Example}

Note: Many branches are omitted.
The second level would actually contain \(9 \times 8=72\) nodes. Page 16

\section*{Board Evaluator}

The second component of a game system is the board evaluator which is responsible for determining if a given board position or state is advantageous for the player.
\(\bullet\) The board evaluator determines the good and bad moves.
The move generator builds a game tree to get some insight as to what might happen in future moves:
-Future board scenarios are thus known by playing out moves, counter-moves, counter-counter-moves, etc.
- Future board scenarios are of no use if you have no mechanism to evaluate them.
The board evaluator determines when a sequence of moves (a path in the game tree) is advantageous for the player.

\section*{Why did Deep Blue Win?}

Deep Blue ended up winning due to increasing computation power.
- This extra power allowed the computer to examine more possible moves in the game tree.
The use of parallel computers that have multiple processors and memory allow for complex problems to be solved.
- The top 500 most powerful computers in the world have thousands of processors and are used for simulations of weather, military tests, and earthquakes
Is Deep Blue intelligent?
- The search algorithm was "intelligent", but does it qualify as what we consider intelligence?
\begin{tabular}{|l|}
\hline Survey \\
Computer Games \\
\hline \begin{tabular}{l}
Question: I have noticed an improvement in the \\
intelligence/interactivity of the computer or computer characters \\
in the games I play. \\
A) Yes \\
B) No
\end{tabular} \\
\hline
\end{tabular}

\section*{Survey}

Computer Games and Your Time
Question: I have spent more time this semester playing games than working on this course.
A) Yes
B) No

\section*{Survey \\ Social Computer Games}

Question: I confess to playing social games Zynga (Farmville, MafiaWars, etc.) or other Facebook or online games:
A) Never - What a waste of time!
B) Never - I love games but those are NOT games!
C) Once a month or less
D) Once a week
E) Daily or many times per day.
\(\bullet\) Help me! I am addicted. I play all the time (even during class)!

\section*{Computer Creativity}

Computers can run programs that automatically generate music, art, and pictures.
-The intelligence is still with the software - not the computer.
- The software is encoding human intelligence.

The underlying question is: Is creativity algorithmic? If it is, computers may one day be creative.
- Many things that are creative are algorithmic.
\(\Rightarrow\) Mathematics was once considered creative or inspired.

Creativity is sometimes inspiration but is also a lot of revision.
\(\bullet\) Inspiration to create something totally new. Revision is modifying existing to produce something new. Algorithmic?
\(\bullet\) Many "new" advertising, research, etc. are based on revisions.

\section*{Why are some programs faster than others?}

Recall that an algorithm is a sequence of steps to solve a problem.

The performance of an algorithm when implemented on a computer depends on the approach used to solve the problem and the actual steps taken.

Although faster hardware makes all algorithms faster, algorithms that solve the same problem can be compared in a hardware-independent way using big-Oh notation.

\section*{The Universality Principle}

In theory, all computers have the same ability to compute as they use the same basic functions.
-This is called the Universality Principle.

In practice, differences in computer hardware, software, and operating systems make it impossible to run all software on all computers and to run it efficiently.
Examples:
\(\bullet\) processors encode instructions differently in hardware
- operating systems support different features
\(\bullet\) programs require processing speed that hardware cannot achieve
Six basic instructions: Add, Subtract, Set_to_One, Load, Store,
and Branch On Zero.

\section*{Algorithms \\ Best and Worst Case}

Very few algorithms have the exact same performance every time because the performance of an algorithm typically depends on the size of the inputs it processes.

The best case performance of the algorithm is the most efficient execution of the algorithm on the "best" data inputs.
The worst case performance of the algorithm is the least efficient execution of the algorithm on the "worst" data inputs.
The average case performance of the algorithm is the average efficiency of the algorithm on the set of all data inputs.

Best, worst, and average-case analysis typically express efficiency in terms of the input size of the data.
\(\bullet\) The input size is often a function of \(\boldsymbol{n}\).
Page 28

\section*{Algorithms \\ Big-Oh Notation}

Big-Oh notation is a mechanism for quickly communicating the efficiency of an algorithm.
Big-Oh notation measures the worst case performance of the algorithm by bounding the formula expressing the efficiency.

In big-Oh notation:
- The performance is specified as a function of \(\boldsymbol{n}\) which is the size of the problem.
\(\Rightarrow\) e.g. \(n\) may be the size of an array, or the number of values to compute
- Only the most significant expression of \(\boldsymbol{n}\) is chosen:
\(\Rightarrow\) e.g. If the method performs \(n^{3}+n^{2}+n\) steps, it is \(\mathrm{O}\left(n^{3}\right)\).
\(\Rightarrow\) Significance ordering: \(2^{n}, n^{5}, n^{4}, n^{3}, n^{2}, n^{\star} \log (n), n, \log (n)\)
-Constants are ignored for big-Oh:
\(\Rightarrow\) e.g. If the method performs \(5^{*} n^{3}+4^{*} n^{2}\) steps, it is \(\mathrm{O}\left(n^{3}\right)\).

\section*{Algorithms Common Big-Oh Notation Values \\ There are certain classes of functions with common names: \\ - constant = O(1) \\ - logarithmic \(=\mathrm{O}(\log n)\) \\ - linear = O(n) \\ - quadratic \(=\mathrm{O}\left(n^{2}\right)\) \\ - exponential \(=\mathrm{O}\left(2^{n}\right)\) \\ These functions are listed in order of fastest to slowest. \\ -For example, for large values of \(n\), an algorithm that is considered \(\mathrm{O}(n)\) is faster than an algorithm that is \(\mathrm{O}\left(2^{n}\right)\). \\ -Big-Oh notation is useful for specifying the growth rate of the algorithm execution time \\ \(\Rightarrow\) How much longer does it take the algorithm to run if the input size is doubled?}

Page 31

Cosc 122 - Dr. Ramon Lawrence

\section*{Big-Oh Exercise}
1) What is the Big-Oh for the following formulas?
-a) \(4^{*} n^{3}+3^{*} n^{2}+6^{*} n\)
-b) \(n+n * \log (n)\)
\begin{tabular}{|l|}
\hline Big Oh Notation \\
\hline Question: What is the big Oh for the following formula: \\
\(4^{*} n^{2}+3^{*} n^{4}+6^{*} \boldsymbol{n}\) \\
A) \(O\left(n^{2}\right)\) \\
B) \(O\left(3 n^{4}\right)\) \\
C) \(O\left(n^{4}\right)\) \\
D) \(O(n)\) \\
\\
\end{tabular}
\begin{tabular}{|l}
\hline Best/Worst/Average Case \\
\hline \hline Question: Assuming your mark is given between 0 and 100 . \\
How many of the three values (best case, worst case, average \\
case) do you know for sure regardless who is in the class? \\
A) 0 \\
B) 1 \\
C) 2 \\
D) 3
\end{tabular}

\section*{Best/Worst/Average Case Finding a Song}

Question: You have 1000 songs on your music player and want a particular song. You "search" for your song by pressing the random button (pick a random song) until your song comes up. How many times do you have to press the random button for each case? Assume that the randomize feature can return the same song more than once.
A) best case \(=1\), worst case \(=1000\), average case \(=500\)
B) best case \(=1\), worst case \(=500\), average case \(=500\)
C) best case \(=1\), worst case \(=\) forever, average case \(=500\)

\section*{How Hard Can a Problem Be?}

There exists problems that no computer can solve efficiently.
These problems are called NP-complete problems and are considered intractable
-The only way to solve the problem is to try all possible solutions to find the best.
Even the most powerful computers cannot solve large examples of these problems.
Example problem: Travelling salesman problem - find best route between \(n\) cities.

Holy Grail: Solving a NP-complete problem is a Holy Grail in computer science and would be an amazing breakthrough.

\section*{Computers in the Future}

The future of IT is bright. There are many technologies being developed that are migrating from the research labs into use.
-Software agents - Can software be your personal butler?
- Robots - When we build robots, what would you want it to do?
\(\bullet\) Self-healing and adapting - Can our systems fix themselves?
\(\bullet\) Wearable computers - Can we embed computers in clothing and glasses? In our eyes and brains?
-Language translation - Can we have the universal translator?
- Personal Life Databases - Can we record all of our life information and moments (text, images, sound, video)? \(\Rightarrow\) What would that look like? Would you want that?
\(\bullet\) Automatic driving cars - Our cars will do the driving (probably better than us). They already know where they are going...
\(\bullet\) Presence technology - I know you are here... Page 39
\begin{tabular}{|c|c|}
\hline Conclusion & Objectives \\
\hline \begin{tabular}{l}
Computers do not yet mimic human creativity although they demonstrate "artificial intelligence" in many domains. \\
\(\bullet\) One of these domains is game playing where intelligence is provided by game trees and search strategies. \\
Computer scientists compare algorithms independently of hardware using big-Oh notation. \\
NP-complete problems are problems where no efficient solution exists. Unsolvable problems are problems where it is proven no solution at all exists.
\end{tabular} & \begin{tabular}{l}
Explain the Turing Test in your own words. \\
-Define: artificial intelligence \\
List and briefly explain the three components of game playing using game trees and the mini-max strategy. \\
-Define: Universality Principle \\
Be able to convert a formula in \(n\) into big-Oh notation. \\
Compare and contrast: best case, worst case, average case \\
Compare and contrast: NP-complete problem, unsolvable problem
\end{tabular} \\
\hline Page 41 & Page 42 \\
\hline
\end{tabular}

\section*{Computer Fluency}

Fluency means that you are able to adapt to new applications and use computers efficiently.

We have studied the skills, concepts, and capabilities of IT.
\(\bullet\) Although the detailed skills may be forgotten or change over time, the fundamental concepts and capabilities allow us to learn new skills as required.

Remember, the key to being an expert user is using your past knowledge to understand how to use new systems.
- No one remembers all details and skills.

\section*{Computer Fluency \\ Skills, Concepts, and Capabilities}

Skills are the ability to use computers today to solve your problems.
- You have learned new applications: Word, Excel, Access, HTML editors and the ability to learn new applications.

Concepts are the fundamental principles that apply to many situations. They are the building blocks of future learning.
-Key concepts: how the Internet (TCP/IP) works, how a computer works (Fetch/Execute cycle), key components of programming (HTML/JavaScript), information representation, security

Capabilities are ways to expand your thinking.
-Thinking algorithmically, reasoning, debugging, designing, creating, searching and representing information.

Page 3

\section*{The Big IT Ideas}

The big IT ideas essentially boil down to two things:
- Information must be structured on the computer to be useful. All information is represented as bits, so knowing the context is essential for understanding the meaning.
-Programs encode algorithms to solve problems. Algorithms represent intelligence on how to solve problems and provide the computer with the context and capability to perform all its advanced functions.
\(\Rightarrow\) Computer programming is the art and science of solving problems on the computer.

\section*{Computers in Society}

By understanding the technology, we have a better perspective on the role and influence of computers in society.

Like all technologies, information technology can be used for positive change and negative actions.

As users, and even designers, we have a role to play in shaping the effect of technology on this world. Displaying good ethics and protecting privacy is as important as building complex computer systems.
```


[^0]:    COSC 122 - Dr. Ramon Lawrence

