
1 

Background 

The exposure of wine grapes (Vitis vinifera [V. vinifera]) to smoke from wildland fire or prescribed 

burns changes the sensory profile of the berry (i.e., the grape).  More specifically, wine made from smoke-

exposed berries shows an increased incidence of ‘smoky’, ‘ashy’, ‘burnt meat’ and ‘Band-Aid’ sensory 

attributes, all of which are undesirable in a quality product.[1–4]  Chemically these negative sensory 

descriptors are associated with a specific class of compounds called volatile phenols (VP).  This 

phenomenon is particularly problematic for the wine industry in the Okanagan Valley given the frequent 

occurrence of wildland fires during the growing season.  However, it is also important for the global wine 

industry, as many key growing regions are also located in close proximity to fire-prone regions.  For 

instance, recent reports suggest that the economic impact of wildland fire on the Australian wine industry 

during the 2009 growing season was $299 million.[5]  It is expected that this issue will increase in 

relevancy, as climate change models are suggesting an increase in the frequency of wildland fires in key 

wine growing regions (e.g., California, British Columbia, Australia).[5]     

Lignin, which accounts for 20-30% of the dry weight of wood, leads to the formation of a variety 

of VP during combustion.  Many of these combustion products are known to correlate with the negative 

sensory descriptors associated with smoke-exposed berries (Figure 1).  However, a subset of VP may also 

be present endogenously in the berry, where they are found in free (aglycone) and sugar-bound forms 

(glycosides), with the concentration of the glycosides typically much higher than the aglycones.  Adding 

to the complexity of this problem is the fact that phenolic glycosides (VP-glycosides) may be 

enzymatically or chemically hydrolyzed during fermentation and aging.  As such, despite possessing no 

sensory properties, VP-glycosides represent a ‘sensory potential’ that can influence the sensory profile of 

wine, even years after bottling.  Existing methods (using VP and their glycosides) to quantify the risk 

associated with using smoke-exposed berries are only 50 – 80% predictive of negative sensory attributes 

in wine, leaving vineyards and wine producers at considerable financial risk.[6]  My research aims to obtain 

a detailed assessment of the chemical composition of smoke-exposed berries (including and beyond VP 

and their glycosides), which will facilitate the development of a more accurate model for predicting wine 

quality issues, as well as inform remedial and preventative strategies. 

 

 

Figure 1: The core units of lignin (blue) and examples of combustion products with demonstrated 

relevance to the negative sensory properties of smoke-exposed V. vinifera berries.  Nine of these VP 

(purple), including three cresols, were assessed quantitatively (vide infra). 

 

Experimental Design and Sample Analysis 

To assess the impact of smoke on the chemical composition of V. vinifera berries, a series of 

controlled field experiments were conducted.  Using a custom-built enclosure that housed nine vines, four 
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commercial varietals (Merlot, Pinot Noir, Cabernet Sauvignon and Cabernet Franc) were exposed to 

simulated wildland fire smoke (Figure 2).  In an effort to ensure equal exposure for all vines, only the 

middle five vines were sampled as ‘smoked’ berries.  A separate block of five vines per varietal were used 

as a control condition (i.e., no smoke exposure).  For each condition (smoked versus control) and each 

vine (5/condition) a series of time points were collected from immediately preceding smoke-exposure 

through until commercial maturity (Figure 2).  Each sample was processed to as whole berry homogenate 

(HMG) and free-run juice (FRJ) to mimic the raw materials for red white wine production, respectively.  

Finally, a subset of time-points for some varietals were split into two fractions that were either washed or 

unwashed before processing as HMG and FRJ. 

 

Figure 2: The enclosure used to expose vines to simulated wildland fire smoke, showing the outside 

(top left), inside (top middle) and inside during smoke exposure (top right).  The sample collection and 

processing scheme resulted in 560 total samples collected from the 2016 growing season.  This includes 

HMG, FRJ, washed and unwashed samples. 

In addition to the samples outlined above, a second set was collected by sampling 50-60 vines per 

varietal over an area corresponding to 1-2 acres.  This was done to quantify endogenous levels of key VP 

in these varietals, which would facilitate a rigorous statistical comparison between control and smoke-

exposed berries.  These samples were collected at commercial maturity, which corresponded to the last 

time-point for each varietal.  The GPS coordinates of each sample were collected to enable repeated 

analysis of the same vines across multiple years and to assess the presence of trends as a function of 

location. 

To quantify the concentration of VP known to contribute to the negative sensory attributes of wine 

made from smoke-exposed berries (Figure 1), targeted analysis of nine VP was conducted.  This 

quantitative analysis was performed on berry extracts using gas chromatography-mass spectrometry (GC-

MS).  This analytical methodology separates VP in the time domain (GC), then uses a sensitive and 

specific detector (MS) to ensure the correct signal corresponding to the desired VP are accurately 

quantified (Figure 3). 
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Figure 3: Gas chromatography-mass spectrometry (GC-MS) involves separation in the time domain 

(GC), with each peak in the above data color-coded to a single compound (left).  This is followed by 

sensitive detection (MS) that is specific to each time-response pair (left).  Integration of the area-under-

the-curve for each compound and subsequent comparison to a calibration function results in accurate 

quantitative analyses (right). 

To date there has been a myopic focus on VP and their glycosides to predict quality issues in wine 

made using smoke-exposed berries.  While successful and informative, this approach has obvious 

limitations given that VP and their glycosides are only 50-80% predictive of wine quality issues.  

Improving this predictive accuracy requires a broad comparison of the chemical composition of smoke-

exposed and control berries.  The use of mass-spectrometry-based non-target screening workflows (i.e., 

metabolomics) will facilitate this characterization.  My approach uses ultra-high pressure liquid 

chromatography (uHPLC) to separate compounds prior to detection using MS.  Conceptually this is 

similar to the GC-MS approach described above.  However, in this workflow MS detection is non-targeted, 

often producing in excess of 10,000 unique masses per sample that need to be mined for significance.  

Moreover, rather than producing a simple-to-interpret VP concentration the output from non-targeted 

analysis is qualitative, producing a mass that the analyst must assign significance to.  This is most often 

achieved by assigning an empirical chemical formula, or by performing a statistical comparison using a 

given accurate mass (Figure 4).  As a final layer of complexity, the MS used in this study produces masses 

accurate to the fourth decimal place, but each measurement also has an uncertainty associated with it (± 

2-5 parts-per-million).  This creates a mass binning problem that must be addressed before significance 

can be assigned. 

 

Data Analysis 

The desired output from quantitative GC-MS analysis is a table of VP concentrations that need to 

be correlated back to specific experimental conditions (vide supra).  Based on the tested sample matrix 

for control versus smoked-exposed wine grapes, GC-MS analysis will generate a total of 5,220 (580 

samples x 9 VP) unique VP concentrations that need to processed into meaningful results summaries.  As 

well, the samples associated with specific GPS coordinates (1,980 unique VP values) need to be visualized 

to assess spatial trends and determine summary statistics to establish baseline levels of VPs in control 

vines.  To manage these large data sets and enable data from future studies to be easily integrated into an 

efficient data management system, I will build a series of relational databases in Access that will contain 

the quantitative GC-MS results and the associated metadata.  Using SQL queries for data reduction and 

analysis, I then propose to take queried data sets and export them into R for statistical analyses (mean, 

standard error of the mean, t-test with unequal variance, etc.) and to Tableau and R for data visualization.  

As well, I intend to use R to model left censored data (where some samples quantitate below a defined 

threshold) when calculating summary statistics for the GPS data.  This process will require an evaluation 



4 

of the degree of censoring per VP and varietal, determining the nature of each distribution (e.g., normal, 

log-normal, etc.) and finally, applying the appropriate statistical tests to obtain values for the censored 

data.   

To facilitate the generation of maps in Tableau I will create a conversion algorithm in Excel to 

change GPS coordinates in degrees:minutes:seconds to decimal degrees, which is the format required by 

Tableau.  After generating the appropriate background map in Tableau, I will use the converted GPS 

coordinates to map the concentration of VPs over the areas surveyed. 

 

Figure 4: A simplified representation of a potential non-targeted (metabolomics) screening workflow.  

Following separation in the time domain a series of mass spectra are generated.  The spectra can be 

mined for significance (e.g., principle component analysis [PCA]), after which key mass responses can 

be targeted for compound identification, or vice versa. 

A non-targeted analytical workflow produces data that requires a much different data analysis 

stream than quantitative analysis (Figure 4).  Given the complexity associated with mining uHPLC-MS 

data, which involves identifying and binning relevant MS responses that correlate to chromatographic 

peaks (as per Figure 4), instrument vendor software will be used (MassHunter, Agilent Technologies) in 

tandem with custom-built Excel tools to facilitate data reduction.   

On the front end of data reduction, Excel will be used to provide a list of masses that MassHunter 

should search for.  This type of workflow is referred to as ‘known-unknown’ screening.  Providing this 

list requires the calculation of exact masses for a series of chemical formulae.  Most MS vendor software 

packages enable the calculation of the exact mass for a single chemical formula.  However, when a series 

of formula conversions are required the user is left to do this one-by-one.  To improve the efficiency of 

this process I will build an exact mass calculator in Excel.  This tool will take a chemical formula (with a 

defined set of elements), parse out the quantity of each element and return the exact mass.  As well, I will 

build an Excel template that will perform simple in silico chemical conversions to aid in the generation of 

a combinatorial database for VP-glycosides.  



5 

Results and Discussion 

Targeted Data Analysis 

Excel was used for unit conversion and parsing to take GPS coordinates in 

degrees:minutes:seconds (dd° mm.sss’) to decimal degrees, which is the format required by Tableau 

(Figure A4).  In this formula the LEFT() and MID() functions were used to parse out the degrees, minutes 

and seconds from the coordinates obtained from a GPS device (e.g., 49° 50.423’).  The parsed values were 

converted to decimal degrees as part of the same function.  The final step involved an IF() statement that 

checked the direction of each coordinate and assigned a negative value if the direction was West or South. 

 Using the GPS coordinates1 (in decimal degrees), the ability of Tableau to efficiently visualize the 

spatial distribution of VPs was evaluated for four grape varietals from two vineyards in the Okanagan 

Valley.  To add interest to the final visualization, the addition of satellite images in lieu of the stock 

Tableau base maps was explored.  Adding a satellite image in Tableau currently requires the use of 

Mapbox Studio as the source of satellite imagery.  Going through this process yielded a more interesting 

and informative map, as the rows at each vineyard can be seen underlying the VP data (Figure A4).  After 

importing the quantitative results from GC-MS analysis into Tableau a dashboard was created to enable 

simultaneous review of all varietals (Figure A5).  Each map in the dashboard was generated with the 

varietal coded by color and the amount of VP coded by size.  To enable visual assessment of data trends 

VP concentrations were binned to improve size discrimination.  From figure A5 it is apparent that pinot 

noir has a higher guaiacol concentration than the other three varietals.  It remains to be seen if this elevated 

level of guaiacol results in an increased susceptibility to sensory issues in wine following pinot noir 

grapevine smoke-exposure.  Moreover, it could be argued that summary statistics for each VP in each 

varietal (e.g., box-whisker plot) would be a more efficient data comparison.  This argument seems valid 

for peer-reviewed literature.  However, for graphically representing this data in conferences and 

presentations the use of the Tableau map in tandem with summary statistics visually guides the audience 

as to how the data should be interpreted, which is a more effect means of conveying large amounts of data 

with complex relationships. 

 To organize the quantitative results, a series of relational databases were created in Access (Figure 

A6).  These relational databases were interrogated using SQL queries to generate reduced data sets.  It is 

my intention to take the reduced data sets and use R Studio to calculate appropriate summary statistics 

and a combination of R Studio and Tableau to generate publication quality summary figures.  As an 

example of this approach, I used an SQL query to tabulate the percent of left-censored data for each 

varietal (see smokeVolatiles.mdb for query code).  The percentage of left-censored data, the distribution 

of the data (vide infra) and the number of replicates determine the statistical methods that can be used to 

model censored data.  Choosing an accurate censorship model enables the calculation of summary 

statistics with minimal bias, as might be obtained from the more common practice of arbitrarily 

substituting one of several values (e.g., zero, detection limit/2, etc.) for censored data.  After saving the 

query results in Access, I linked Tableau to the Access database and generated a summary plot indicating 

the suggested course of action for each data set by color code (Figure A7).  Displaying the data in this 

                                                           
1 Note that the results presented in this update are not intended to be the final evaluation of the spatial 

distribution data.  More accurately, they are being used in their current (raw) form as placeholders to 

develop and demonstrate the visualization and data reduction schemes outlined above.  Much of these 

results are left-censored and require further statistical treatment before strong conclusions can be 

reached.  It is my intent to have this analysis completed in R for my final report 



6 

way was an efficient summary for an audience unfamiliar with my methodologies, as it clearly indicates 

how the GPS data were treated statistically to produce a meaningful set of summary statistics. 

   

Non-Targeted Data Analysis 

 To support ‘known-unknown’ screening a parsing tool was created to do batch calculations of 

exact masses given a list of chemical formulae as input (Figure A1).  This tool used the FIND() and 

ISERROR() functions to index the constituent elements from each formula string.  The ISERROR() 

function was used to return ‘0’ if no elements of given type were found, which was required to enable 

correct referencing in subsequent steps.  After indexing, an iterative IF() statement was generated to pull 

out the number of atoms of each element.  The IF() iterations locate the index for each element in the 

previous step using the MID() function, then define the length of each number sequence using the 

ISNUMBER() function.  The number of IF() iterations used limited the maximum number of each element 

to 999, which is an acceptable range for the type of analyses conducted as part of my PhD research.  The 

final piece of this tool was the calculation of the monoisotopic mass, which involved the sum of absolute 

references to accurate masses for each element multiplied by the quantity of each element parsed from the 

input formulae. 

 A combinatorial database of VPs and sugars known to be involved in glycoside formation in wine 

grapes was constructed using the exact masses of the constituent components.  These masses were batch-

calculated using the Excel tool described above.  The glycoside chemical formulae were calculated by 

referencing the parsed chemical formulae of each component of the glycoside and adding up the 

constituent elements via a series of VLOOKUP() functions in tandem with concatenation of the resulting 

sums (Figure A2).  The exact mass of the glycosides were calculated using VLOOKUP() to find the exact 

mass of the constituents and sum them.  For the calculation of chemical formulae and exact masses, the 

loss of H2O during the formation of a new glycosidic bond was accounted for. 

The combinatorial database was imported directly into the MassHunter software to interrogate 

uHPLC-MS data.  For this analysis, a series of control and smoke-exposed Cabernet Franc wine grapes 

were used.  As an example of the output from MassHunter for this analysis, a schematic of the final 

workflow is shown in Figure A3.  The first step required input in the form of exact masses from the 

combinatorial glycoside database.  The MassHunter software then utilizes a proprietary algorithm (with 

exact masses as input) to identify potential matches in uHPLC-MS data.  From the Cabernet Franc data 

analyzed, a variety of putative VP-glycosides were identified at elevated levels in the smoke-exposed 

sample set when contrasted to the control wine grapes (data not shown).  Of particular interest was the 

strong match for syringyl-glucuronide, as the glucuronic acid family of sugars has not been reported in 

the literature.  If this finding can be confirmed, it would mean that current methods for assessing the 

impact of smoke-exposure neglect an entire class of glycosides.  It remains to be determined if such 

glycosides are present at high enough levels in smoke-exposed wine grapes to influence sensory 

perception in the resulting wine. 
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