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1. Instruction  

As one of the most important infrastructures in cities, water mains buried underground require 

an efficient infrastructure management system to manage complicated deteriorating pipeline 

systems, since the failure of pipeline can result in high maintenance cost and serious threats to 

society and the environment. The core component of the management system is the technology for 

condition assessment of water mains, specifically, methods to evaluate the pipeline condition and 

methods to predict the pipe’s remaining service life. Hence, lots of studies have been undertaken, 

utilizing data to develop a decision model to assess the pipe performance and analyze the key 

factors leading to pipeline failure.  

For water mains assessment, statistical models are a cost-effective means of analysis. The 

generalized multivariate exponential model proposed by Kleiner and Rajani et al. (2003) 

considered time-dependent variables and allows for simple evaluation and variation prediction in 

pipe breaks. Multivariate exponential model was also developed, compared with transition state-

life regression model and validated later (Osman, Ph, & Bainbridge, 2011).  Recently, another 

statistical model: a Bayesian belief network model (BNN) was proposed, which used soil 

properties to predict the remaining service life of water mains (Demissie, Tesfamariam, & Sadiq, 

2014). It determined soil corrosion index by sorting the soil parameters into major groups and 

minor groups. Then, combining with a mathematical model, the safety index is calculated with pit 

depth, corrosion initiation time and pipe wall thickness using BBN. Such statistical approaches 

mentioned above may help pipeline management by predicting remaining service life or break rate 

of water mains. However, in parallel with the statistical approaches, the complexity of water 

networks has led to wider employment of data mining techniques to predict pipe failures (Berardi, 

Giustolisi, Kapelan, & Savic, 2008).  

Based on data mining techniques, artificial neural networks (ANN) methods have been widely 

employed in pipe’s performance prediction. To improve previous failure prediction of pipelines, 

ANN model: multilayer perceptron (MLP) is proposed (Achim, Ghotb, & Mcmanus, 2007). It 

achieved an improvement 19% in terms of 𝑟2 when compared with shifted time exponential model. 

Then a model integrated Analytical Hierarchy Process and ANN was developed (Al-barqawi & 

Zayed, 2008). After utilizing AHP to determine weights of factors and their sub-factors, supervised 

ANN and back propagation algorithm were used to predict pipe performance and its deterioration 



 
 
rate. Fahmy et al. (2009) applied multiple regression, MLP and general regression neural network 

(GRNN) to forecast the remaining useful life of cast iron water mains. Considering two 

rehabilitation strategies: Cement Mortar Lining and Cathodic Protection, Asnaashari et al. (2013) 

predicted the watermain failure rates successfully using ANN modelling. 

However, in a recent study, when GRNN and Feed Forward Neural Networks were used to 

estimate the pipe failure rates, their performance was worse than that of a novel approach 

combining fuzzy clustering and least square support vector machine (LS-SVM)  (Aydogdu & Firat, 

2015). Through the review of previous studies, integrated modelling tends to have a more 

outstanding prediction performance because they would have the advantages of two or more 

models. Therefore, this project presents a stacking ensemble prediction method, combining the 

predictions from different advanced models, to modify existing models. Armed with the tools 

learnt from the class, this project first used Excel to do data transformation, cleaning and some 

basic data analysis. Then cleaned data was read into R to do more data visualization and analysis 

first based on ggplot package. Finally, machine learning was employed to predict the pipe 

performance based on the caret package in R.  

2. Data Description  

The original dataset is a xlsx file which contains 119 rows and 19 columns data with missing 

values and irrelevant variables. These datasets of water mains were collected from Toronto (Doyle, 

2000) including pipe identity, external pit depth, internal pit depth, pipe age, pipe wall thickness 

and five soil properties. 

3. Overview of Techniques 

  Based on the techniques covered in the class, Microsoft Excel and R were selected in this 

project. Microsoft Excel is the most popular spreadsheet program that allows users to quickly sort, 

analyze and report data. In this project, Excel was used to do data transformation and data cleaning. 

For R, it is an open source programming language for statistical computing and graphics with the 

most comprehensive available statistical analysis package. Since the graphical capabilities of R 

are outstanding, it was utilized to visualize data based on the ggplot package in this project. With 

respect to machine learning, the caret package in R offers a nifty way of developing it. In addition, 



 
 
since the new technology and ideas often appear first in R, ensemble method implemented was 

based on the latest package in R, caretEnsemble.  

4. Data Cleaning Using Excel 

Because of the difficulty of collecting data related to soil properties and pipe features, shown 

as Fig.1, the dataset I obtained is full of missing values. Therefore, I first used Excel to replace 

missing values with NA() function and color these cells with conditional formatting function, 

which is shown as Fig. 2.  Finally, the aggregate functions are used to create new and more useful 

variables. Fig.3 presents the final cleaned data. 

 
Fig. 1. Spreadsheet of raw data 

 
Fig. 2. Spreadsheet of raw data with missing value highlighted 

 



 
 

 
Fig. 3. Spreadsheet of cleaned data  

5. Data Visualization and Analysis Using R 

One key factor results in the water mains’ failure is the corrosion of the pipelines. Corrosion is 

classified into two types: internal corrosion caused by water flowing through the pipe and external 

corrosion caused by the soil surrounding the pipe (Doyle, 2000). The most direct results of 

corrosion are the corrosion pits in pipes structure. With the data of break history and depth values 

of external maximum pits of the water mains, Fig. 4 illustrates that the pipes with break history 

have much higher maximum pit values, which indicates that it is the external corrosion that results 

in pipe failure indirectly. 

 
               Fig. 4. Pit depth vs. break history                    Fig. 5. Sulfide vs. break history 

Through the direct contact of pipes, soil environment causes pipe corrosion mainly by 

electrochemical reactions including galvanic corrosion cells, electrolytic corrosion cells, bacterial 

corrosion, acid attack etc. (Doyle, 2000).  Because soil environment with high sulfide contents 

would promote the growth of the sulfite reducing bacteria which can cause bacterial corrosion, the 

few soil data with high sulfide contents were shown in Fig. 5 as outliers.  



 
 

 

       Fig. 6. Pit depth vs. resistivity       Fig. 7. Pit depth vs. resistivity with soil type labels 

For electrochemical corrosion, soil resistivity is the main factor in determining deterioration 

rate. Commonly, with the reduce of resistivity, the deterioration rate of pipes increases, which is 

shown in Fig. 6. In addition, the soil resistivity is closely related to the soil type. Fig. 7 shows that 

the resistivity in silt soil is low, which may result in the highest value of pit depth of pipes in silt 

soil environment. Apart from resistivity, soil moisture content is the main factor determining the 

corrosion current density (Cole & Marney, 2012). As shown in Fig. 8, the higher the moisture 

content is, the more corrosive the soil environment is. Furthermore, Fig.9 presents that silt soil has 

highest moisture contents, which may be another reason for that the silt soil is the most corrosive. 

However, the scientific correlation between moisture content and corrosion has not been 

established and proved.                    

 

   Fig. 8. Pit depth vs. moisture           Fig. 9. Pit depth vs. moisture with soil type labels 



 
 
6. Prediction of Pipe Performance Using R 

With the collected data, soil properties were considered in this prediction modelling, which 

were summarized in Table 1. Important statistical information such as mean, median and quartiles 

was provided. As shown in Table 1, the value of resistivity is much larger than other variables, 

which should be regularized, so the log of resistivity is used in machine learning finally.   

Table 1. Summary of Data of Soil Properties Used in Experiment  

Soil Properties Min. 1st Qu. Median Mean 3rd Qu. Max. 
Resistivity (Ω cm) 36.2 578.0 1498.0 2815.4 2282.0 14946 
 PH value 7.20 8.40 8.70 8.68 9.00 10.50 
 Sulfide 0.00 0.38 0.76 5.71 1.92 167.88 
 Moisture 0.60 11.10 16.20 16.94 22.60 34.80 
 Soil Type Sand          9 Clay 16 Silt 20 

 

 

Fig.10. Scatter plot matrix for variables and the target 



 
 

To evaluate pipe condition, pipe deterioration rate (DR) was used as the predictive target in this 

experiment, which was expressed as the ratio between the maximum pitting depth and pipe age 

(Liu, Sadiq, Rajani, & Najjaran, 2010). Then, corresponding scatter plot with the DR as 𝑦 was 

shown in Fig. 10, which provided an overview of the relationship between every two variables. As 

depicted in Fig.10, the plot relating DR to pH are scattered randomly, which may indicate there is 

no strong correlation between the soil pH and DR.  

6.1 Random Forest (RF) 

RF gets its name from the concept that each tree is grown with a randomized subset of predictors, 

and that a forest consists of a large number of trees (Liu et al., 2010). It starts with a standard 

machine learning technique, decision tree.  Not only does it has fast runtimes, but it also can deal 

with unbalanced and missing data. However, it also has disadvantage that when it is used for 

regression, it may overfit datasets that are particularly noisy. As an ensemble method, the random 

forest was first tried in this project.  

6.2 Gaussian Process  

A Gaussian process is a collection of random variables that have joint Gaussian distributions, 

which can be employed as a supervised learning method to solve flexible non-linear regression 

problems. The appearance of kernel machines such as SVM and Gaussian opens the new 

perspectives with practical prediction and nonlinear modeling (Rasmussen, 2006). Therefore, 

Gaussian process with a radial basis function (RBF) kernel model was built in this study to help 

predict DR of pipelines. The RBF kernel is stationary kernel, which can be expressed as following:  

κ(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−
𝑑(𝑥𝑖 𝑙⁄ ,𝑥𝑗/𝑙)

2

2
)                                               (1) 

where ι > 0, which is a length-scale hyperparameter (Yang, Smola, Song, & Wilson, 2015).  

6.3 SVM 

The SVM algorithm derived from a nonlinear generalization of generalized portrait algorithm 

in 1993 and entered the standard methods toolbox of machine learning in around 1998 (Smola & 

Schölkopf, 2004). The SVM is scalable, which can generalize well, even on relatively small given 

training data sets (Suykens & Vandewalle, 2000).  The SVM is applied to regression problems by 

the introduction of an alternative loss function (Brereton & Lloyd, 2010). In this experiment, SVM 

with a RBF kernel was used to predict the pipe performance. In the training process, two 



 
 
parameters should be noticed: λ  and c.  λ parameter defines the influence weights of a single 

training examples while c parameter weights the error of training samples against simplicity of 

decision surface. After model tuning, the final parameters used for the model were λ = 0.0245517 

and c = 1. 

6.4 Combine Model Prediction into Ensemble Predictions  

Stacking is about combining multiple models built by using different learning algorithm on the 

same dataset. After a set of base-level models are built and evaluated, a meta-level model is 

introduced to learn how to combine the results of the base-level models (Dzeroski & Zenko, 2004). 

Intuitively, ensembles allow the different needs of a difficult problem to be handled by models 

suited to those particular needs (Oza & Tumer, 2008). In this study, stacking ensemble method 

used higher-order model, generalized linear model (GLM) to learn how to best combine two best 

performance models: Gaussian and SVM. 

 

Fig.11. Flowchart of methodology of stacking ensemble 

As shown in Fig.11, the first step of ensemble approach was to build Gaussian and SVM models, 

where the results were evaluated with the square root of the average of the square of all the error 

(RMSE) and R-squared (𝑅2). The evaluation results from the ensemble system in the training 

phase were shown as Fig.12. With the assessment of performance of every single model, as the 

meta-level model, generalized linear regression (GLM) was trained to learn how to determine the 

best weights of results obtained from different modeling. 



 
 

 

Fig.12. Prediction evaluation of Gaussian and SVM in ensemble 

7. Results 

In this experiment, the RMSE and 𝑅2 were used to evaluate the prediction performance of 

different modeling methods. Their equations are as following:  

RMSE = √
1

n
∑ (yi − ŷi)2
n
i=1                                                 (2) 

                                                        𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)

2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)
2𝑛

𝑖=1

                                                 (3) 

Whereas R-squared is a relative measure of fit, RMSE is an absolute measure of fit. The lower 

RMSE is, the better the model fits. For R-squared, it ranges from zero to one and the higher value 

it is (close to 1), the better the model fits. Table 2. Presents the RMSE and R2 in training and 

testing phases for all single models and the ensemble model, which demonstrates that the stacking 

ensemble method has the best performance with the highest 𝑅2 in comparison with to other models. 

Table 2. Model Assessment (Best Results Are Highlighted in Bold) 

         Model  RF Gaussian SVM Ensemble 

Train Set         R-Squared 0.483 0.570 0.778 0.790 

          RMSE 0.0608 0.0558 0.0538 0.0554 

 Test Set         R-Squared 0.525 0.659 0.732 0.792 

         RMSE 0.0394 0.0333 0.0296 0.0261 



 
 

Even though the data collected is small, the ensemble modeling proposed in this paper still has 

a good prediction performance with the highest 𝑅2 value of 0.792 and the lowest RMSE value of 

0.0261. Compared with Gaussian and SVM modeling, its accuracy of the prediction also has a 

certain level of improvement. 

8. Conclusion 
Since the need to assess watermain performance efficiently is growing, forecasting the 

condition of water main becomes increasingly important. This project employed a novel approach 

to better forecast the pipe performance based on machine learning with stacking ensemble 

modeling. Four models including the ensemble model were implemented to predict the condition 

of pipelines. Compared with the performance of RF, Gaussian and SVM models, the superiority 

of ensemble methods is demonstrated, reducing the RMSE up to 45%. Since the ensemble 

modeling developed in this paper is robust and accurate, it can assist pipe management system to 

do pipe performance measure using data of soil properties.   
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