Review \# 2

1. (a) Give the definition of the Principal branch $\log (z)$ of the logarithm.
(b) Describe the domain and range of $\log (z)$? Where is $\log (z)$ analytic?
(c) Is it true that $\log \left(x^{2}\right)=2 \log (z)$ for all $z \in \mathbb{C}$?
(d) Sketch and describe carefully the domain of analyticity of $\log (2 z-1)$.
2. Express the following quantities in the $u+i v$ form.
(a) $\sinh (1+\pi i)$
(b) $\mathcal{L}_{\pi / 2}(-\sqrt{3}+i)$
3. Find all values of z for which $\log \left(z^{2}+1\right)=\frac{i \pi}{2}$.
4. Find all values of z for which $e^{z^{2}}=1$.
5. Evaluate
(a) $i^{\sqrt{2}}$
(b) $\left(\frac{2 i}{1+i}\right)^{1 / 3}$
(c) $(\sqrt{3}+i)^{1+i}$
6. Compute by two different methods:

$$
\int_{i}^{2 i}\left(z^{2}-2 e^{2 z}\right) d z
$$

7. Let γ be the boundary of the circle of radius 2 centered at the origin. Compute
(a) $\int_{\gamma} \frac{1}{z^{2}+1} d z$
(b) $\int_{\gamma} \frac{z+i}{z-3} d z$
(c) $\int_{\gamma} \frac{\cos z}{z\left(z^{2}-1\right)} d z$
8. Let z_{0} denote a fixed complex number, and let γ be a simple closed contour with positive orientation such that z_{0} lies in the interior of γ. Derive the following formula:

$$
\oint_{\gamma} \frac{d z}{\left(z-z_{0}\right)^{n}}=\left\{\begin{array}{cc}
0 & n \neq 1 \\
2 \pi i & n=1
\end{array}\right.
$$

9. (a) State Cauchy's Integral Theorem.
(b) State the Deformation Invariance Theorem
(c) Show that Cauchy's Integral Theorem implies the Deformation Invariance Theorem.
10. Prove $(2) \Leftrightarrow(3)$ in the Path Independence Lemma.
