Review # 2

1. (a) Give the definition of the Principal branch Log(z) of the logarithm.

- (b) Describe the domain and range of Log(z)? Where is Log(z) analytic?
- (c) Is it true that $\text{Log}(x^2)=2 \text{ Log}(z)$ for all $z \in \mathbb{C}$?
- (d) Sketch and describe carefully the domain of analyticity of Log(2z 1).

2. Express the following quantities in the u + iv form.

- (a) $\sinh(1+\pi i)$
- (b) $\mathcal{L}_{\pi/2}(-\sqrt{3}+i)$
- **3.** Find all values of z for which $Log(z^2 + 1) = \frac{i\pi}{2}$.
- 4. Find all values of z for which $e^{z^2} = 1$.
- 5. Evaluate

(a)
$$i^{\sqrt{2}}$$
 (b) $\left(\frac{2i}{1+i}\right)^{1/3}$ (c) $(\sqrt{3}+i)^{1+i}$

6. Compute by two different methods:

$$\int_{i}^{2i} (z^2 - 2e^{2z}) \, dz.$$

7. Let γ be the boundary of the circle of radius 2 centered at the origin. Compute

(a)
$$\int_{\gamma} \frac{1}{z^2 + 1} dz$$
 (b) $\int_{\gamma} \frac{z + i}{z - 3} dz$ (c) $\int_{\gamma} \frac{\cos z}{z(z^2 - 1)} dz$

8. Let z_0 denote a fixed complex number, and let γ be a simple closed contour with positive orientation such that z_0 lies in the interior of γ . Derive the following formula:

$$\oint_{\gamma} \frac{dz}{(z-z_0)^n} = \begin{cases} 0 & n \neq 1, \\ 2\pi i & n = 1. \end{cases}$$

9. (a) State Cauchy's Integral Theorem.

- (b) State the Deformation Invariance Theorem
- (c) Show that Cauchy's Integral Theorem implies the Deformation Invariance Theorem.

10. Prove $(2) \Leftrightarrow (3)$ in the Path Independence Lemma.