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Wölfer sunspot numbers 1700 and 1998, n = 289.

Consider the Wölfer sunspot numbers. As an example,
statistical package IMSL fits an ARMA(2,1) model given by

Xk = µ + Zk , Zk = φ1Zk−1 + φ2Zk−2 + θ1εk−1 + εk

to the yearly Wölfer sunspot numbers for years 1749–1924
(n=176), and their method of moments estimators for this
sequence are φ̂1 = 1.24, φ̂2 = −.58 and θ̂1 = −.12.
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Chula Vista, California annual average temperatures 1919 - 1996,
n = 78.

Lund and Reeves (2002) examined the data on annual mean
temperatures at Chula Vista, California during 1919-1996,
inclusive (n = 78). They used F-statistics in their test for
change in linear regression, and assumed independence in the
error process.
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Nile annual discharge at Aswan. 1871-1970, n=100.
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Collegeville,NS, annual temperatures. 1916-1995, n=80.

The annual mean maximum temperatures of Collegeville, Nova
Scotia, Canada, (1916-1995) were tested for inhomogeneity by
Vincent (1998), n = 80.
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Introduction

Consider the model

Xk = µ +
∑

0≤i<∞
aiεk−i . (1)

Assume that
εi , −∞ < i < ∞,

are independent, identically distributed r.v.

Eεi = 0, 0 < σ2 = Eε2
i < ∞, E |ε0|κ < ∞ (2)

with some κ > 2.
Instability in the value of any parameter will lead to wrong
forecasts and data analysis, so detecting change in them is
a statistical problem of great importance. Once change has
been detected, the time of change has to be estimated.



Introduction Results Results Examples Examples References

Introduction

Consider the model

Xk = µ +
∑

0≤i<∞
aiεk−i . (1)

Assume that
εi , −∞ < i < ∞,

are independent, identically distributed r.v.

Eεi = 0, 0 < σ2 = Eε2
i < ∞, E |ε0|κ < ∞ (2)

with some κ > 2.
Instability in the value of any parameter will lead to wrong
forecasts and data analysis, so detecting change in them is
a statistical problem of great importance. Once change has
been detected, the time of change has to be estimated.



Introduction Results Results Examples Examples References

Introduction

There is an extensive literature on detecting change in the
parameters of autoregressive time series. (See e.g. Picard
(1985), Davis et al. (1995), Gombay (2008), and
references therein). The AR(p) model allows to write the
likelihood function in a simple form, and from this the
maximum likelihood estimators are readily derived.
This is not the case for moving average models, or for the
more general model of linear processes.
There is a group of papers on how to detect multiple
structural changes in linear processes using dynamic
programming techniques. (e.g. Bai and Perron (1998),
Davies et al. (2006)). In those papers the tests
performance under the null hypothesis of no change is not
known in most cases, and the critical values are obtained
by simulation.



Introduction Results Results Examples Examples References

Introduction

There is an extensive literature on detecting change in the
parameters of autoregressive time series. (See e.g. Picard
(1985), Davis et al. (1995), Gombay (2008), and
references therein). The AR(p) model allows to write the
likelihood function in a simple form, and from this the
maximum likelihood estimators are readily derived.
This is not the case for moving average models, or for the
more general model of linear processes.
There is a group of papers on how to detect multiple
structural changes in linear processes using dynamic
programming techniques. (e.g. Bai and Perron (1998),
Davies et al. (2006)). In those papers the tests
performance under the null hypothesis of no change is not
known in most cases, and the critical values are obtained
by simulation.



Introduction Results Results Examples Examples References

Introduction

There is an extensive literature on detecting change in the
parameters of autoregressive time series. (See e.g. Picard
(1985), Davis et al. (1995), Gombay (2008), and
references therein). The AR(p) model allows to write the
likelihood function in a simple form, and from this the
maximum likelihood estimators are readily derived.
This is not the case for moving average models, or for the
more general model of linear processes.
There is a group of papers on how to detect multiple
structural changes in linear processes using dynamic
programming techniques. (e.g. Bai and Perron (1998),
Davies et al. (2006)). In those papers the tests
performance under the null hypothesis of no change is not
known in most cases, and the critical values are obtained
by simulation.



Introduction Results Results Examples Examples References

Our approach is analytical, it belongs to the family of
AMOC procedures, multiple changes can be treated by the
usual segmentation technique.
Detecting change in the auto-covariance structure for
model (1) was considered by Lee et al. (2003). Their test
statistic is based on a quadratic form constructed with the
m + 1 estimators of γ(0), . . . , γ(m), where
γ(r) = E{(X1X1+r )− [E(X1]

2} r ≥ 0.
In their algorithms the fourth moment of innovations {εt}
has to be estimated. They suggest fitting a long AR(p),
p = p(n), model to the observations, estimating the
parameters of this model, then the residuals, and finally the
fourth moment of the residuals.
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Introduction

Testing for change in the mean of the process uses CUSUM
statistics

Mn(t) = n−1/2
( ∑

1≤i≤(n+1)t

Xi − t
∑

1≤i≤n

Xi

)
, 0 ≤ t < 1

in the case of independent observations.
Now we can extend the use of the CUSUM statistics above
to observation as in (1) by the virtue of the next theorems.
(I will present a simplified form of the theorems as there is
no time for both theory and applications in a short talk.
This talk is meant to be one concentrating on applications.)
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Theorem

Assume the sequence of observations {Xi} satisfy relation (1)
and (2) and ∑

1≤j<∞
j |aj | < ∞,

∑
1≤j<∞

aj 6= 0.

Then with τ2 = σ2(
∑

1≤j<∞ j |aj |)2 < ∞

τ−1 sup
0<t<1

|Mn(t)| →D sup
0<t<1

|B(t)|,

where {B(t), 0 ≤ t ≤ 1} denotes a Brownian bridge.
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Results

The CUSUM process M(r)
n (t) adapted for testing for

change in the covariance of the process (1), that is in
γ(r) = E{XiXi−r − [E(Xi)]

2}, (r ≥ 0 integer), is

M(r)
n (t) = n−1/2

( ∑
1≤i≤(n+1)t

XiXi−r − t
∑

1≤i≤n

XiXi−r

)
,

for 0 ≤ t < 1.
The following theorem gives the theoretical justification for
using asymptotic critical values based on the distribution of
the Brownian bridge.
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Theorem

Assume the sequence of observations {Xi} satisfy relation (1)
and (2)with some κ > 8, aj = O(ρj), 0 < ρ < 1, as j →∞,∑

1≤j<∞
aj 6= 0.

Then with

τ2(r) = lim
n→∞

n−1Var
( ∑

1≤i≤n

XiXi−r

)
< ∞

τ(r)−1 sup
0<t<1

|M(r)
n (t)| →D sup

0<t<1
|B(t)|,

where {B(t), 0 ≤ t ≤ 1} denotes a Brownian bridge.
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Results

Consider the model of simple linear regression

yi = α + βxi + εi , i = 1, . . . , n,

with xi = ti , the time parameter. We assume {εi} are dependent
variables described by the linear relationship

εi =
∞∑

j=0

aiηi−j , i = 1, 2, . . . , n,

where ηj are i.i.d.r.v.’s with mean zero, variance σ2
η , and for

some ν > 2
E |η|ν < ∞,

and for the {aj} sequence of constants

aj = O(γ j), j →∞,

for some γ, 0 < γ < 1.
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We can extend the results of Gombay and Horváth (1994) for
time series errors and use Zn(1, n) = max1<k≤n |Un(k)| for
testing, where

Un(k) = wn(k)Rn(k),

Rn(k) =
( n

k(n − k)

)1/2 k∑
i=1

(yi − yn − β̂n(xi − xn)),

wn(k) = {1− k [xk − xn]
2/[

n∑
i=1

(xi − xn)(1− k/n)]}−1/2.
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Results

Theorem

Under certain general conditions

lim
n→∞

P
{1

σ n
a(log n)Zn(1, n) ≤ x+b(log n)

}
= exp(−2e−x), (5)

for some σn > 0, where a(x) = (2 log x)1/2,
b(x) = 2 log x + 1/2 log log x − 1/2 log π. Based on this
theorem the algorithm is defined as follows.

TEST. Reject H0 at α level of significance if

a(log n)σnZ (1, n)− b(log n) ≥ − log(−1/2 log(−(1− α)),

otherwise do not reject H0.



Introduction Results Results Examples Examples References

Results

Theorem

Under certain general conditions

lim
n→∞

P
{1

σ n
a(log n)Zn(1, n) ≤ x+b(log n)

}
= exp(−2e−x), (5)

for some σn > 0, where a(x) = (2 log x)1/2,
b(x) = 2 log x + 1/2 log log x − 1/2 log π. Based on this
theorem the algorithm is defined as follows.

TEST. Reject H0 at α level of significance if

a(log n)σnZ (1, n)− b(log n) ≥ − log(−1/2 log(−(1− α)),

otherwise do not reject H0.



Introduction Results Results Examples Examples References

Results

The applicability of the results in Theorems 1-3 requires
the estimation of the standardizing constants τ , τ(r), and
σn.
Testing for change in the MA(q) process
When testing for change in moving average models our
new algorithm will estimate the standardizing constants
with the help of the strong law of large numbers.
Assume that process is Xt = εt +

∑q
i=1 θiεt−i

To test for change in the autocovariance functions
γ(r) = E{XiXi−r − [E(Xi ]

2)}, r = 0, . . . , q, given data
X1, . . . , Xn, consider the process

k∑
t=1

[XtXt−r − E(XtXt−r )], k = 1, . . . , n,

where we use Xi = 0 if i ≤ 0.
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Results

As XtXt−r is a function of εt , . . . , εt−r , εt−r−1, . . . , εt−r−q, the
sequence {XtXt−r} is m = 1 + r + q-dependent. It is a simple
exercise to show that the strong law of large numbers holds for
m-dependent sequences, so

1
n

n∑
k=1

XkXk−r →a.s. E(XtXt−r ),

and for the same reason,

1
n

n∑
k=1

XkXk−r Xk+uXk+u−l →a.s. E(XtXt−r Xt+uXt+u−l).
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Results

By stationarity

Var(
n∑

t=1

XtXt−r ) =

n∑
t=1

Var(XtXt−r ) + 2
n∑

t=1

n∑
s=t+1

Cov(XtXt−r , YsYs−r )

= nVar(XtXt−r ) + 2
n∑

t=1

q+r∑
u=1

Cov(XtXt−r , Xt+uXt+u−r ).
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Results

By the strong law of large numbers

1
n

n∑
k=1

X 2
k X 2

k−r − (
1
n

n∑
k=1

XkXk−r )
2 →a.s. Var(XtXt−r ),

and

1
n

n∑
k=1

XkYk−r Xk+uXk+u−r − (
1
n

n∑
k=1

XkXk−r )
2 →a.s.

Cov(XtXt−r , XsXs−r ).

Putting these estimators into expression above we get an
estimate of τ2(r).
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Example 1: MA(1) process is Xt = εt + θεt−1, so q = 1 and the
covariance function of the process is γ(0) = σ2

ε (1 + θ2),
γ(1) = θσ2

ε , and γ(h) = 0 for |h| > 1. The standardizing
constants are estimated by

τ̂(0) =
n∑

k=1

X 4
k + 2

n∑
k=1

X 2
k X 2

k+1 − 3
1
n

(
n∑

k=1

X 2
k )2,

τ̂(1) =
n∑

k=1

X 2
k X 2

k−1+

+2{(
n∑

k=1

X 2
k Xk−1Xk+1 +

n∑
k=1

XkXk−1Xk+1Xk+2)}

−5
1
n

(
n∑

k=1

XkXk−1)
2.
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Empirical power of one-sided and two-sided tests for change in γ(1)

of MA(1) models. The sample size is n = 500 and the change point is
at τ = 250. The standard deviation is 1.0.
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Example 2: MA(5) process is Yt = εt +
∑5

i=1 θiεt−i , so
q = 5,
If the interest is in detecting change in the variance, then
with r = 0 the statistic is

sup
1<k<n

τ̂−1(0)(
k∑

t=1

X 2
t −

k
n

n∑
t=1

X 2
t ), 1 ≤ k ≤ n.

Assuming the MA(q) model is equivalent to assuming
γ(r) = 0, |r | > q. So in that regard our approach is the
same as that of Bartlett’s estimator as it also gives γ(r)
value zero if |r | > q(n) = c log10 n, (e.g. c=10 or c=15).
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Empirical power of one and two-sided tests for change in the
standard deviation of MA(5) models. The sample size is

n = 300 and the change point is at τ = 150. The initial standard
deviation is 1.0, parameters θi are specified in the legend.
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We now consider how this method works if the process is not
MA(q), but a more general linear one as in (1).
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Wölfer sunspot numbers 1700 - 1988, n = 289.

Recall section 1749–1924 (n=176) is ARMA(2,1) with
φ1 = 1.24, φ2 = −.58, θ1 = −.12.
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Empirical power of one and two-sided tests for change in the
standard deviation of ARMA(2,1) models when MA(5) model is
assumed. The sample size is n = 300 and the change point is
τ = 150. The initial standard deviation is 1.0. The parameters

of the ARMA model: φ1 = 1.24, φ2 = −.58, θ1 = −.12.
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For the longer series 1700 - 1988 (n=289) our algorithm rejects
the null hypothesis of no change in the variance (observed
value of test statistic is 1.45055):
p-value = .0298 for the two-sided test
p-value = .0149 for the one-sided test
The change is put to observation no. k = 236, corresponding to
year 1936.
Estimates:
σ̂2

1 = 1137.9, (σ̂1 = 33.7, n1 = 236)
σ̂2

2 = 2591.4, (σ̂2 = 50.9, n2 = 53)
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As the MA component is not very important relative to the AR
component (θ = −.12), we can use an AR(2) approximation to
these data. The results of ”Change detection in autoregressive
time series” (G., JMVA(2008)) can be applied and test for
change in the variance.
The results: observed value of the two-sided test statistic is
2.18, with change-point estimate k = 246 (year 1946).
p-value = .0002 for the two-sided test
Estimates:
σ̂2

1 = 1155.17, (σ̂1 = 33.99, n1 = 246)
σ̂2

2 = 2833.59, (σ̂2 = 53.23, n2 = 43)
φ̂1 = 1.34, φ̂2 = −.64.
This difference in the observed level of significance is the price
for the rough fit of the MA(5) model to these data.



Introduction Results Results Examples Examples References

Examples

As the MA component is not very important relative to the AR
component (θ = −.12), we can use an AR(2) approximation to
these data. The results of ”Change detection in autoregressive
time series” (G., JMVA(2008)) can be applied and test for
change in the variance.
The results: observed value of the two-sided test statistic is
2.18, with change-point estimate k = 246 (year 1946).
p-value = .0002 for the two-sided test
Estimates:
σ̂2

1 = 1155.17, (σ̂1 = 33.99, n1 = 246)
σ̂2

2 = 2833.59, (σ̂2 = 53.23, n2 = 43)
φ̂1 = 1.34, φ̂2 = −.64.
This difference in the observed level of significance is the price
for the rough fit of the MA(5) model to these data.



Introduction Results Results Examples Examples References

Examples

As the MA component is not very important relative to the AR
component (θ = −.12), we can use an AR(2) approximation to
these data. The results of ”Change detection in autoregressive
time series” (G., JMVA(2008)) can be applied and test for
change in the variance.
The results: observed value of the two-sided test statistic is
2.18, with change-point estimate k = 246 (year 1946).
p-value = .0002 for the two-sided test
Estimates:
σ̂2

1 = 1155.17, (σ̂1 = 33.99, n1 = 246)
σ̂2

2 = 2833.59, (σ̂2 = 53.23, n2 = 43)
φ̂1 = 1.34, φ̂2 = −.64.
This difference in the observed level of significance is the price
for the rough fit of the MA(5) model to these data.



Introduction Results Results Examples Examples References

Examples

Example 2: Time series linear regression.
The annual volume of discharge from the Nile River at Aswan
1871-1970 is a data set that has been examined by many
statistical procedures. It is reasonable to apply our test to see if
one linear regression model would fit the data.
Our test indicated a change in the parameters of linear
regression at τ̂ = 28, corresponding to year 1899. Different
orders q of MA(q) were used for the error process. Each lead to
the rejection of H0, with p-value 5.35× 10−10, 0.0019, and
0.01, respectively for q = 0, 1, 2.
The overall slope is estimated as β̂ = −2.71, the before and
after change slopes are estimated as β̂1 = 1.27 and β̂2 = 0.38,
respectively.
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Our test indicated a change in the parameters of linear
regression at τ̂ = 28, corresponding to year 1899. Different
orders q of MA(q) were used for the error process. Each lead to
the rejection of H0, with p-value 5.35× 10−10, 0.0019, and
0.01, respectively for q = 0, 1, 2.
The overall slope is estimated as β̂ = −2.71, the before and
after change slopes are estimated as β̂1 = 1.27 and β̂2 = 0.38,
respectively.



Introduction Results Results Examples Examples References

Examples

−3
−2

−1
0

1
2

3
4

time

St
ati

sti
c

statistic
absolute value
critical value

1870 1890 1910 1930 1950 1970

The statistics process and its absolute value for the Nile annual
discharge at Aswan with critical level.
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Annual discharge of Nile with regression lines. Change is
detected in 1899, τ̂ = 28.
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Example 3. The annual mean maximum temperatures of
Collegeville, Nova Scotia, Canada, (1916-1995)were tested for
inhomogeneity by Vincent (1998), n = 80.Our test detected
change in the linear regression parameters at τ̂ = 39 with
p-value 0.020 and 2.2× 10−10, for MA(2) and MA(0) error
approximations, respectively. The overall slope estimate is
β̂ = −0.0146, accounting for one change we have estimators
β̂1 = 0.0397 and β̂2 = 0.0016.
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The statistics process and its absolute value for Collegeville
annual temperatures with critical level.
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Collegeville annual temperatures with regression lines. Change
is detected around 1899, τ̂ = 39.
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Example 4. Lund and Reeves (2002), Berkes et al. (2008)
examined the data on annual mean temperatures at Chula
Vista, California during 1919-1996, inclusive (n = 78).
Lund and Reeves (2002) used F-statistics in their test for
change in linear regression, and assumed independence in the
error process, Berkes et al. (2008) tested for change in the
mean, without assuming independence. It is reasonable to
combine the advantages of both methods and test for change
in the parameters of linear regression without assuming
independence of errors.
Our test was significant with change detected at estimated time
τ̂ = 62 (1981). The three slope estimates are β̂ = 0.02,
β̂1 = 0.05, β̂2 = 0.089.
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Chula Vista annual temperatures statistics process and its
absolute value with α = 0.05 critical level.
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Chula Vista annual temperatures with regression lines. Change
is detected in around 1998, τ̂ = 62.
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