Variable Selection in Additive Models with an Application to Logbook Data on Blue Sharks

Joanna Mills Flemming

Assistant Professor

Department of Mathematics and Statistics Dalhousie University Halifax, NS, CANADA

TIES, June 2008

< ロ > < 何 >

- Eva Cantoni
- Elvezio Ronchetti
- Julia Baum

 NSERC NICDS

< □ ▶

< 🗇 🕨

-

=

5990

- Important issue in any statistical analysis
- Determine strongest effects that explain the response variable
- Reduces model complexity by admitting a small amount of bias

< □ >

Sar

- US National Marine Fisheries Service Pelagic Observer Program
- Catches of the blue shark, Prionace glauca
- Northeast Coastal and Distant Atlantic

< □ >

Sar

Goals:

- Statistical:
 - propose an additive model
 - accommodate covariates which are potentially nonlinearly related to some function of the response (counts)
 - simultaneously fit a model and perform variable selection

- Ecological:
 - Are blue shark counts decreasing?

< D >

< 🗗 >

-

1

nac

- *Subset selection:* quickly becomes infeasible when the covariate dimension is too large
- *Stepwise procedures:* suffer from dependence on the path chosen through the variable space and may be inconsistent
- Shrinkage methods: have emerged and gained popularity in recent years
- Methods that simultaneously address estimation and variable selection now exist: modified LASSO, COSSO

< □ >

nac

• Simple approach to variable selection for additive models

- Based on nonnegative garrote idea of Breiman (1995)
- Simultaneously has properties of subset selection, shrinkage and stability

• Computationally reasonable

- Simple approach to variable selection for additive models
- Based on nonnegative garrote idea of Breiman (1995)
- Simultaneously has properties of subset selection, shrinkage and stability

<

• Computationally reasonable

- · Simple approach to variable selection for additive models
- Based on nonnegative garrote idea of Breiman (1995)
- Simultaneously has properties of subset selection, shrinkage and stability
- Computationally reasonable

< □ >

- · Simple approach to variable selection for additive models
- Based on nonnegative garrote idea of Breiman (1995)
- Simultaneously has properties of subset selection, shrinkage and stability

<

Computationally reasonable

Methodology

Additive Model

$$Y_i = \alpha + \sum_{k=1}^p f_k(\mathbf{x}_{ki}) + \epsilon_i$$

Solves

$$min_{c_k}\sum_{i=1}^n (y_i - \alpha - \sum_{k=1}^p c_k \hat{g}_k^{h_k}(x_{ki}))^2$$

under the constraints $c_k \ge 0$ and $\sum_{k=1}^{p} c_k \le s$. The final estimate of $f_k(x_{ki})$ is $\hat{f}_k(x_{ki}) = c_k \hat{g}_k^{h_k}(x_{ki})$.

- h_1, \dots, h_p are smoothing parameters of the initial function estimates $\hat{g}_1^{h_1}, \dots, \hat{g}_p^{h_p}$.
- c_k depends on s and s is regarded as an additional parameter.
- Decreasing s has the effect of increasing the shrinkage of the nonzeroed functions and making more of the ck become zero.
- Given an initial estimate of all the additive functions in the model and a value for s our method will automatically give a set of coefficients c₁, ... c_p that will provide information on the importance of each variable in the model.

500

- Smoothing parameters of initial fits must be selected in a reasonable manner
- \Rightarrow We select to use an automatically data driven approach

Image: 1 million (1 million)

- **A**

nac

- Best value of s will be that which minimizes the PE
- \Rightarrow Estimate the PE by V-fold cross-validation

=

5990

< □ ▶

< 日 >

-

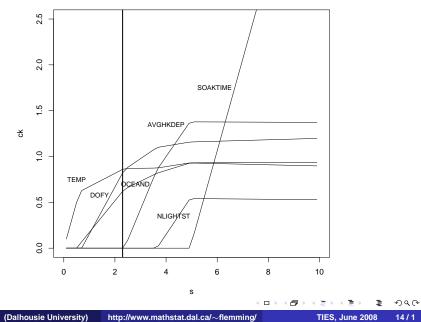
- Two parts:
- \Rightarrow gam from the mgcv library in R
- \Rightarrow Modified fortran code of Breiman and linked with R

5990

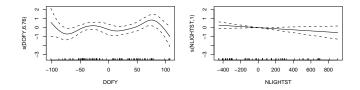
< D >

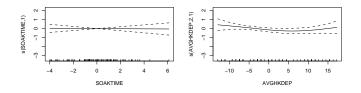
A.

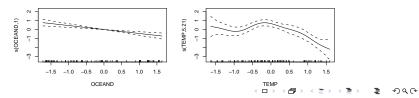
-


Model

 $\begin{array}{l} log(bluesharks+1) = \alpha + f_1(DOFY) + f_2(NLIGHTST) + f_3(SOAKTIME) + \\ f_4(AVGHKDEP) + f_5(OCEAND) + f_6(TEMP) + log(TOTHOOKS) \end{array}$


- Sample size is 91
- Strongest effects are TEMP, OCEAND and DOFY
- SOAKTIME and NLIGHTST can be removed
- AVGHKDEP borderline
- DOFY complicated functional form, TEMP approximately quadratic


Sac

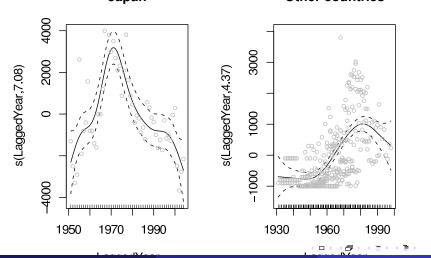

< D >

J. Flemming (Dalhousie University) http://www.mathstat.dal.ca/~flemming/

J. Flemming (Dalhousie University) http://www.mathstat.dal.ca/~flemming/

TIES, June 2008 15 / 1

- In terms of predictive ability, as well or better than competitors
- · Code readily available and user-friendly


5990

< □ ▶

< 日 >

-

 Patterns of expansion and depletion of invertebrate fisheries on a global scale Japan
Other countries

J. Flemming (Dalhousie University) http://www.mathstat.dal.ca/~flemming/

5900

- Extension to GAMs •
- Robustness aspects •

=

5990

-

< 🗆 🕨 < 🗇 🕨