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Variable Selection

• Important issue in any statistical analysis

• Determine strongest effects that explain the response variable

• Reduces model complexity by admitting a small amount of bias
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Motivating Example

• US National Marine Fisheries Service Pelagic Observer Program

• Catches of the blue shark, Prionace glauca

• Northeast Coastal and Distant Atlantic
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Goals:

• Statistical:

• propose an additive
model

• accommodate covariates
which are potentially
nonlinearly related to
some function of the
response (counts)

• simultaneously fit a model
and perform variable
selection

• Ecological:

• Are blue shark counts
decreasing?
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Approaches

• Subset selection: quickly becomes infeasible when the covariate
dimension is too large

• Stepwise procedures: suffer from dependence on the path chosen
through the variable space and may be inconsistent

• Shrinkage methods: have emerged and gained popularity in
recent years

• Methods that simultaneously address estimation and variable
selection now exist: modified LASSO, COSSO
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Nonnegative Garrote

• Simple approach to variable selection for additive models

• Based on nonnegative garrote idea of Breiman (1995)

• Simultaneously has properties of subset selection, shrinkage and
stability

• Computationally reasonable
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Methodology

Additive Model

Yi = α +

p∑

k=1

fk(xki) + εi

Solves

minck

n∑

i=1

(yi − α −

p∑

k=1

ck ĝhk
k (xki))

2

under the constraints ck ≥ 0 and
∑p

k=1 ck ≤ s. The final estimate of
fk (xki ) is f̂k (xki) = ck ĝhk

k (xki).
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Interpretation

• h1, · · · , hp are smoothing parameters of the initial function

estimates ĝh1
1 , · · · , ĝhp

p .

• ck depends on s and s is regarded as an additional parameter.

• Decreasing s has the effect of increasing the shrinkage of the
nonzeroed functions and making more of the ck become zero.

• Given an initial estimate of all the additive functions in the model
and a value for s our method will automatically give a set of
coefficients c1, · · · cp that will provide information on the
importance of each variable in the model.
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Choice of h1, · · · , hp

• Smoothing parameters of initial fits must be selected in a
reasonable manner

• ⇒ We select to use an automatically data driven approach
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Choice of s

• Best value of s will be that which minimizes the PE

• ⇒ Estimate the PE by V-fold cross-validation
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Implementation

• Two parts:

• ⇒ gam from the mgcv library in R

• ⇒ Modified fortran code of Breiman and linked with R
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Blue Sharks Dataset

Model
log(bluesharks+1) = α+f1(DOFY )+f2(NLIGHTST )+f3(SOAKTIME)+

f4(AVGHKDEP) + f5(OCEAND) + f6(TEMP) + log(TOTHOOKS)

• Sample size is 91

• Strongest effects are TEMP, OCEAND and DOFY

• SOAKTIME and NLIGHTST can be removed

• AVGHKDEP borderline

• DOFY complicated functional form, TEMP approximately
quadratic
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Discussion

• In terms of predictive ability, as well or better than competitors

• Code readily available and user-friendly
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Other Applications

• Patterns of expansion and depletion of invertebrate fisheries
on a global scale
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The Future

• Extension to GAMs

• Robustness aspects
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