Searching of Periodic Components in the Lake Mina, Minnesota Time Series

Karim J. Rahim¹, Jeannine St. Jacques², David J. Thomson¹

Department of Math and Statistics, Queens University
 Tree Ring Lab, University of Regina

TIES Conference 2008

June 10, 2008

イロン イロン イヨン イヨン 三日

Lake Mina

Lake Mina, Minnesota is located just south of the coniferous/deciduous forest ecotone

Lake Mina Diatoms

Diatoms are (generally) unicellular microscopic algae with cell walls made of silica.

Varved Core

An example of a Varved Lake Core.

Lake Mina Core

The core taken from Lake Mina

What are we looking for?

- We are looking for periodic components in the historical Diatom and Pollen grain record that can be explained by outside forcing.
- Specifically we are looking for evidence of solar and lunar forcing
- For example
 - 11-year solar cycle
 - 18.6-year lunar cycle
 - 35-year Brückner solar cycle [3]
 - Evidence of the 52-month ENSO cycle.

Multitaper

- We will use the multitaper spectrum estimates[2]
- Multitaper spectral estimates, in there crude form, are averaged direct spectral estimators using Discrete Prolate Spheroidal Sequences (dpss's) of different orders as windowing functions.
- For each taper one computes the *eigencoefficients*,

$$y_k(f) = \sum_{t=0}^{N-1} x(t) v_t^{(k)}(N, W) \exp(-i2\pi f t).$$
 (1)

The tapers are normalized such that

$$\sum_{t=0}^{N-1} [v_t^{(k)}(N, W)]^2 = 1$$
 (2)

イロン イロン イヨン イヨン 三日

Multitaper

Figure 1: DPSS

Multitaper

- In practice the crude multitaper estimate is not used, instead weights are used to replace averaging the eigencoefficients (1).
- The weights are calculated iteratively from

$$d_k(f) \approx \frac{\sqrt{\lambda_k} S(f)}{\lambda_k S(f) + B_k(f)},\tag{3}$$

where $B_k(f)$ is an estimate of the power in the broad-band bias terms.

The initial estimate and bound for the bias term is given by

$$B_k(f) \le \sigma^2 (1 - \lambda_k). \tag{4}$$

• We also take the multitaper over sectioned overlapped blocks of data and combind these blocks using the arithmetic mean

F-test

The multitaper method allows for F-tests test for periodic components in coloured noise. The harmonic F-test is defined,

$$F(f) = \frac{(K-1)|\hat{\mu}|^2 \sum_{k=0}^{K-1} U_k(N, W; 0)^2}{\sum_{k=0}^{K-1} |y_k(f) - \hat{\mu}(f) U_k(N, W; 0)|^2},$$
(5)

with 2, and 2K-2 degrees of freedom, where our mean, $\hat{\mu}(f)$ is estimated by

$$\hat{\mu}(f) = \frac{\sum_{k=0}^{K-1} U_k(N, W; 0) y_k(f)}{\sum_{k=0}^{K-1} U_k^2(N, W; 0)}.$$
(6)

Singular Values

We take the singular value decomposition of a matrices formed by the eigencoefficients, (1), at each frequency, of most prevalent diatoms by the pollen or diatom samples.
 Y(f) is k × p

$$\mathbf{Y}(f) = \mathbf{U}(f)\mathbf{\Sigma}(f)\mathbf{V}^{\dagger}(f), \qquad (7)$$

- In the general the right singular vectors of $1/\sqrt{n-1}\mathbf{X}$ are the eigenvectors of the covariance matrix $\mathbf{X}^T \mathbf{X}$, where \mathbf{X} is a $n \times p$ data matrix
- The multitaper eigencoefficients were obtained using a time-bandwidth parameter of 3.5, and 9 data tapers

Singular Values

Figure 2: SVD of eigencoefficients and Data

Left Singular Vectors

- We look at the left singular vectors from the decomposition. We conduct a harmonic F-test, (5) of these singular vectors
- The left singular vectors are eigenvectors of the outer product matrix M(f) = Y(f)Y(f)[†]
- Each column of **M**, contains

$$\mathbf{m_1}(f) = \sum_{i=1}^{p} \mathbf{y_i}(f) \, y_i^{(0)}(f), \tag{8}$$

 The left singular vectors with the largest singular values correspond to dimensions in the data with the most variation at a particular frequency

Left Singular Vector

Figure 3: Ftest of Left Eigenvector 1

Left Singular Vector

Pollen Eigenvector 2

Figure 4: Ftest of Left Eigenvector 2

Significant Peaks 99.5%

SV	Data	Significant Periods	Accountable
1	Pollen	40.76 15.21 13.52 11.55	1
1	Diatom	25.05 11.51 8.56	2
2	Pollen	153.12 94.16	0
2	Diatom	184.09 30.28 19.39 9.65	1
3	Pollen	455.11 26.47 19.14 14.71 12.22	1
3	Diatom	66.06 48.05 37.15	0
		12.59 12.21 11.77	
		10.14 8.21	
4	Pollen	78.39 64.25 38.73	3
		29.10 27.26 17.52	
		15.88 10.42	
4	Diatom	58.94 29.26 21.42 14.98	0

Table 1: Location of Significant Peaks

Canonical Coherence

- Canonical coherence, which is similar to canonical correlation, using multitaper techniques are relative new
- They show the linear relationship between two multivariate sets of time series
- We form the canonical coherence, by taking the SVD of the cross product of left eigenvectors from the original SVD described above

Canonical Coherence

Individual Taxa

- Quercus comprises over one quarter of the pollen sample
- It is a fire-sensitive deciduous tree taxa that is found both dryer mid-Holocene pollen assemblage and colder and moister assemblages [4]
- Fragilaria Crotonensis comprises 35% of the diatom Sample
- This Diatom taxa generally peaks twice a year, once in the late spring and a second time in the Autumn
- The time-bandwidth parameter was set to 3.5, and 7 tapers were used in the Bock Multitaper
- There are 11 blocks and about 84% overlap

Quercus

Figure 6: Figure 6(a) shows initial the Quercus time series, and figure 6(b) plots the block multitaper spectrum.

Fragilaria Crotonensis

(a) Fragilaria Crotonensis Time (b) Fragilaria Crotonensis Spec-Series trum

Figure 7: Figure 7(a) shows initial the Fragilaria Crotonensis time series, and figure 7(b) plots the block multitaper spectrum.

Quercus Spectrogram

Figure 8: Multitaper Spectrogram of Quercus

Fragilaria Crotonensis Spectrogram

Figure 9: Multitaper Spectrogram of Fragilaria Crotonensis

Block Values for F-test

Figure 10: Quercus F-tests for each time block

Moving Values for F-test

Figure 11: Quercus F-test for fixed frequency

Moving Values for F-test

Figure 12: Quercus F-test phase for fixed frequency

Comparing with a Reference Series

- We can compare coherence with a reference set as a way to help rule out aliases
- A reference series of annual tree ring growth from Campito Mountain was obtained [1].
- We needed four-year resolution so we filtered the reference series by projecting the data onto the spaced spanned by the orthonormal dpss's
- We form the projection filter

$$\tilde{\mathbf{x}} = \mathbf{V}\mathbf{V}^{\mathsf{T}}\mathbf{x}.$$
 (9)

Filter Using Expansion in dpss's

Figure 13: Filtered Campito

Coherence with Reference Series

Figure 14: Coherence with Campito Reference Series

Concluding Remarks

- We have found several period line components in the data
- We see evidence of the 11-year and 35-year solar cycle in the two most prevalent of the diatoms and the pollen grains
- In Quercus we see evidence of an 11=year and 35-year period
- We also see evidence of a 16-year period which is not as easily explained
- There are several highly significant period components in the data

Future Work

- Check for evidence of counting errors
- Fit a distribution to the possibility of counting errors and test
- Check for coherence with other reference sets.
- Methods to present, pictorially, information/results of analysis from multiple species.

References

V.C. Lamarche, D.A. Graybill, H.C. Fritts, and M.R. Rose.

Increasing Atmospheric Carbon Dioxide: Tree Ring Evidence for Growth Enhancement in Natural Vegetation.

Science, 225(4666):1019-1021, 1984.

D.B. Percival and A.T. Walden. Spectral analysis for physical applications. Cambridge University Press New York, NY, USA, 1993.

OM Raspopov, OI Shumilov, EA Kasatkina, E. Turunen, and M. Lindholm.

35-year Climatic Bruckner Cycle-Solar Control of Climate Variability? The solar cycle and terrestrial climate, Solar and space weather, 2000.

J.M. St. Jacques, B.F. Cumming, and J.P. Smol.

A 900-year pollen-inferred temperature and effective moisture record from varved Lake Mina, west-central Minnesota, USA.

Quaternary Science Reviews, 2008.

Thanks

33 / 33

Thank you