Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method Multivariate Regression Analysis Out-of-Sample Comparisons Conclusions and Future Work

> Predicting Extra-Fire-Fighting Costs in the Province of Ontario

Rob McAlpine Aviation and Forest Fire Management, Ontario Ministry of Natural Resources And Ou Feng, Ian McLeod and David Stanford Department of Statistical and Actuarial Sciences University of Western Ontario

June 13, 2008

・ロト ・日ト ・ヨト ・ヨト

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method Multivariate Regression Analysis Out-of-Sample Comparisons Conclusions and Future Work

- 1. Overview of Forest Fire Funding Management in Ontario
- 2. Review of Existing MNR Method
- 3. Multivariate Regression Analysis
- 4. Out-of-Sample Comparisons
- 5. Conclusions and Future Work

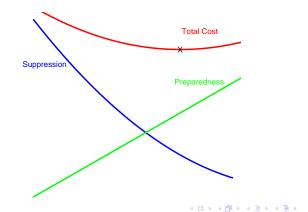
イロト イポト イヨト イヨト

Fire Load Index

Forest Fire Management Program Funding

Forest Fire Management Program funding comprises 4 main components:

- AFFM Infrastructure and Management
- AFFM Preparedness
- EFF Preparedness
- EFF Suppression


イロト イポト イヨト イヨト

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method Multivariate Regression Analysis

Out-of-Sample Comparisons Conclusions and Future Work

EFF Costs

Fire Load Index

э

Outline Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method Multivariate Regression Analysis Out-of-Sample Comparisons Conclusions and Future Work	Fire Load Index
---	-----------------

- The EFF suppression cost is a stochastic variable which can vary widely from year to year and week to week.
- At most, a single fund request for EFF suppression can be made, and there are penalties associated with asking for too much or too little.
- At the same time, it is impossible to remove all uncertainty for the remainder of the fire season when placing a mid-season request for supplementary funds.
- Fire activity is correlated with temperatures, wind speeds, precipitation amounts and other highly volatile factors.
- Our goal is to develop the best prediction possible for the EFF suppression cost of the remain year given all cost data up to date, while realizing that substantial uncertainty will remain.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○□ ● ○○○

Fire Load Index

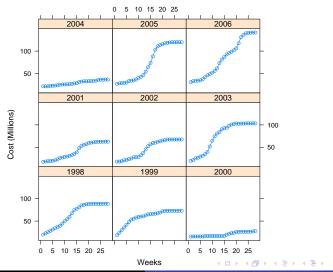
Daily EFF Cost Reporting System (DECRS)

DECRS consists of 4 components as follows:

- DECRS/DFOSS¹ Personal Cost Estimate
- Aircraft Information Management System
- Service and Supplies Estimate Factor
- Base-camp and Equipment Commitment

Pull all together to compile Daily EFF Cost Estimate Report

¹Daily Fire Operations Support System

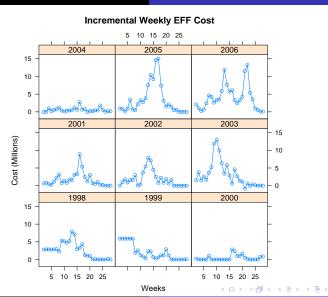

Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

イロト イポト イヨト イヨト

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method

Multivariate Regression Analysis Out-of-Sample Comparisons Conclusions and Future Work Fire Load Index

Cumulative Weekly EFF Cost


Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

臣

Overview of Forest Fire Funding Management in Ontario

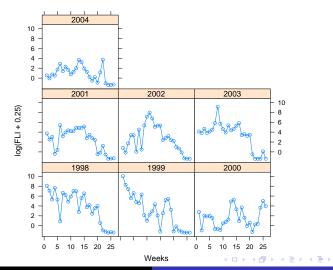
Review of Existing MNR Method Multivariate Regression Analysis Out-of-Sample Comparisons Conclusions and Future Work

Fire Load Index

Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

臣

Fire Load Index


Fire Load Index

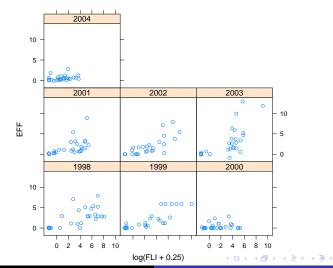
Fire load "The number and magnitude (i.e., fire size class and frontal fire intensity) of all fires requiring suppression action during a given period within a specified area" (Merrill, 1987).

Fire load index (FLI) summed for a period of time and/or across a geographic area to provide an aggregate measure of fire load. The index is a measure of work in watts.

<ロ> (四) (四) (三) (三) (三)

Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

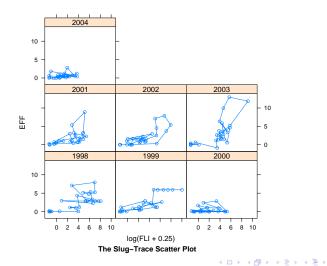
э


Fire Load Index

EFF vs Fire Load Index

- The relationship between the fire load index and the EFF costs will be examined.
- It is expected that they will be highly correlated.
- The fire load index is useful in helping to quantify the intrinsic variability that is associated with the EFF costs.

イロト イヨト イヨト イヨト


Weekly EFF Increments vs. Weekly log FLI

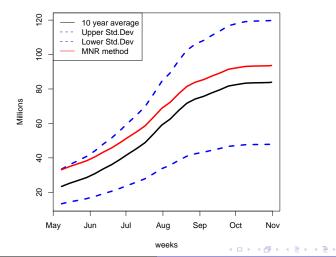
Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

э

Weekly EFF Increments vs. Weekly log FLI

Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

э


10-Year Average Approach

- The average of last 10-year final EFF spending is calculated and allocated through the entire fire season according to the proportion of each week that was accounted in the total amount of 10-year spending.
- The standard deviation of last 10-year final spending is also calculated in order to produce a upper and a lower boundaries for the average. The boundaries are distributed weekly the same way as the average.
- Example If on July 1st of a given year, the amount of spending to date is 7 million higher than the 10-year average, then the forecast for the remainder of the season is obtained by displacing the 10-year average curve 7 million upwards.

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method

Multivariate Regression Analysis Out-of-Sample Comparisons Conclusions and Future Work

2007 EFF Forecast Compared to 10 year EFF Trend

Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

臣

Notations

- ► Z_t^T the cumulative cost for year T and week t; T = 1, 2, ..., 9, ... and t = 1, ..., 28.
- CPI^T Consumer Price Index for year T; T = 1, 2, ..., 9, ...
- ► $Y_{t,l}^T = Z_{t+l}^T Z_t^T$ is the incremental cost *l* weeks later than week *t*, where *l* is the remaining lead time l = 1, ..., 28 t.
- Alternative $R_{t,l}^T = \log Z_{t+l}^T \log Z_t^T \approx \frac{Z_{t+l}^T Z_t^T}{Z_t^T}$
- ► Given the data completely for years T = 1, 2, ..., T₀ and weeks t = 1, ..., 28. We need projections for year T₀ + 1 = τ. Assume that for year τ we have data for weeks t=1,...,n where n < 28, then we need to forecast Z^τ_{n+1} for the remaining lead time.

イロト イヨト イヨト 一日

Multivariate Regression

►

► For each *l*, we run a linear regression $Y_{n,l}^T \sim Z_n^T + CPI^T$, where $T = 1, 2, ..., T_0$; l = 1, ..., 28 - n.

$$\hat{Y}_{n,l}^{\tau} = \alpha_0^{(l)} + \alpha_1^{(l)} Z_n^{\tau} + \alpha_2^{(l)} CPl^{\tau_0}$$
(1)

<ロ> (四) (四) (三) (三) (三)

where $\alpha_0^{(I)}, \alpha_1^{(I)}$ and $\alpha_2^{(I)}$ are the coefficients from the regression and vary with each *I*.

• Then
$$\hat{Z}_{n+l}^{\tau} = \hat{Y}_{n,l}^{\tau} + Z_n^{\tau}$$
.

Alternative Method

- Naive and Minimum Mean Square Error (MMSE) log transformation for the explanatory variables.
- ► The new respond variable will be changed to $R_{t,l}^T = \log Z_{t+l}^T - \log Z_t^T \approx \frac{Z_{t+l}^T - Z_t^T}{Z_t^T}$ as shown before.

• The new regression
$$R_{n,l}^T \sim \log Z_n^T + \log CPl^T$$
.

$$\hat{R}_{n,l}^{\tau} = \beta_0^{(l)} + \beta_1^{(l)} \log Z_n^{\tau} + \beta_2^{(l)} \log CPl^{T_0}$$
(2)

・ロト ・回ト ・ヨト ・ヨト … ヨ

where l = 1, ..., 28 - n; $\beta_0^{(l)}, \beta_1^{(l)}$ and $\beta_2^{(l)}$ are the coefficients from the new regression and vary with each l.

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method Multivariate Regression Analysis

Out-of-Sample Comparisons Conclusions and Future Work

Alternative Method

• For Naive,
$$\hat{Z}_{n+l}^{\tau} = \exp(\hat{R}_{n,l}^{\tau}) \cdot Z_n^{\tau}$$
.

► For MMSE, $\hat{Z}_{n+l}^{\tau} = \exp\left(\hat{R}_{n,l}^{\tau} + (\sigma^2)^{(l)}/2\right) \cdot Z_n^{\tau}$, where $(\sigma^2)^{(l)}$ is the residual variance depending on *l*.

イロト イポト イヨト イヨト

Sample Data

Below is the bottom portion of the dataset we created from the past data and we will predict the rest of EFF spending for year 2006.

	1998	1999	2000	2001	2002	2003	2004	2005	2006
Week 23	88.64	73.02	26.17	61.99	67.43	102.94	33.68	119.24	NA
Week 24	88.65	73.03	26.21	62.23	67.43	103.34	35.48	119.86	NA
Week 25	88.66	73.03	26.23	62.48	67.43	103.43	36.07	119.86	NA
Week 26	88.66	73.03	26.24	62.50	67.43	103.44	36.08	119.86	NA
Week 27	88.80	73.05	26.98	62.49	67.43	103.49	36.26	119.86	NA
Week 28	88.83	73.10	27.83	62.52	67.43	103.50	36.44	119.86	NA

Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

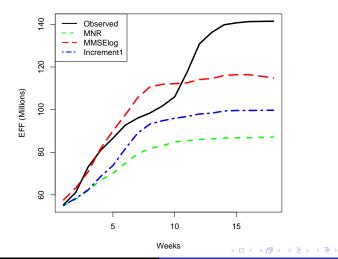
イロン イヨン イヨン イヨン

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method Multivariate Regression Analysis Out-of-Sample Comparisons

Conclusions and Future Work

Observed and Forecast Data

	Observed	MNR	Untransformed	NaiveLog	MMSElog
Week 11	55.36	54.89	57.82	57.53	57.61
Week 12	61.26	57.96	62.63	62.93	63.31
Week 13	73.18	62.05	67.71	69.77	70.90
÷	÷	÷	:	:	:
Week 23	136.24	86.27	105.86	108.58	114.62
Week 24	139.81	86.68	106.75	110.37	116.03
Week 25	140.73	86.81	106.93	110.84	116.38
Week 26	141.30	86.81	106.94	110.84	116.38
Week 27	141.40	86.96	106.85	110.29	115.68
Week 28	141.48	87.11	106.73	109.64	114.89


Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

イロン 不同 とくほど 不良 とう

臣

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method Multivariate Regression Analysis **Out-of-Sample Comparisons** Conclusions and Future Work

Comparisons of Observed and Forecast Data for 2006

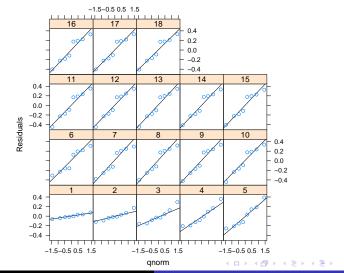
Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

э

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method Multivariate Regression Analysis Out-of-Sample Comparisons

Conclusions and Future Work

Comparisons under Three Criteria

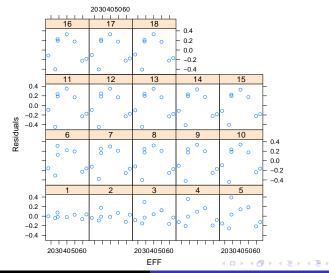

	MNR	Untransformed	Naive	MMSE
MAPE ²	0.24	0.12	0.10	0.10
Accuracy ³	0.76	0.88	0.90	0.90
RMSE ⁴	35.30	20.66	18.53	15.55
MAE ⁵	29.65	15.00	13.35	12.36

²Mean Absolute Percentage Error
 ³=Max(1-MAPE, 0)
 ⁴Root Mean Square Error
 ⁵Mean Absolute Error

Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

・ロト ・日ト ・ヨト ・ヨト

Normal QQ Plot for Residuals from Logged Data


Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

Э

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method Multivariate Regression Analysis Out-of-Sample Comparisons

Conclusions and Future Work

Residuals from Log Transformed Data vs. EFF

Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

э

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method Multivariate Regression Analysis Out-of Sample Comparisons

Conclusions and Future Work

Durbin-Watson and Jarque-Bera Tests

Durbin-Watson Test Used to as a dynamic check for the presence of autocorrelation in the residuals.

Jarque-Bera Test Applied to the residuals as a goodness-of-fit measure of departure from normality assumption.

イロト イヨト イヨト イヨト

Overview of Forest Fire Funding Management in Ontario Review of Existing MNR Method

Multivariate Regression Analysis

Out-of-Sample Comparisons

Conclusions and Future Work

	pDW ⁶	pJB ⁷	pF.test	$R^{2}(\%)$
1	0.91	0.79	0.15	53.10
2	0.83	0.80	0.24	43.50
3	0.99	0.82	0.36	33.70
4	0.99	0.76	0.37	33.00
÷	÷	÷	÷	÷
14	0.77	0.85	0.41	30.30
15	0.76	0.85	0.40	30.70
16	0.76	0.85	0.40	30.70
17	0.77	0.85	0.40	30.40
18	0.78	0.86	0.41	30.10

Table: P values and R^2 Calculated Using the Untransformed Data

⁶the Durbin-Watson Test ⁷the Jarque-Bera Test

Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

イロン イヨン イヨン

Conclusions

New forecasts seem to improve upon existing method

Rob McAlpine Aviation and Forest Fire Management, Ontaria Predicting Extra-Fire-Fighting Costs in the Province of Ontaria

・ロト ・日ト ・ヨト ・ヨト

Conclusions

- New forecasts seem to improve upon existing method
- Fundamentally, little predictive power beyond one week

Rob McAlpine Aviation and Forest Fire Management, Ontari Predicting Extra-Fire-Fighting Costs in the Province of Ontario

イロン イヨン イヨン イヨン

Conclusions

- New forecasts seem to improve upon existing method
- Fundamentally, little predictive power beyond one week
- Various years appear to follow differing regimes (i.e. quiet, typical and extreme years)

イロト イヨト イヨト イヨト

Future Work

- Scenario Generation or Bootstrapping
- STL/ARMA Decomposition
- Credibility Theory $P_c = Z\overline{X} + (1 Z)M$, where $Z = \frac{n}{n+k}$

イロン 不良 とくほどう