W. Stephen McNeil Stephen McNeil
Department of Chemistry
UBC Okanagan
3333 University Way
Kelowna, BC, Canada
V1V 1V7
Office: Fipke 352
Phone: 250.807.8751
Fax: 250.807.8005
email: s.mcneil@ubc.ca

Dr. W. Stephen McNeil is an Associate Professor in the Department of Chemistry at UBC Okanagan, in Kelowna, British Columbia. Information regarding Dr. McNeil's research interests and publications may be found on his faculty research page.

Dr. McNeil often teaches courses such as Chem 121 (Atomic and Molecular Chemistry), Chem 220 (Atomic Structure and Molecular Bonding), Chem 335 (Bioinorganic Chemistry), and he occasionally forays into general, main group, and organometallic chemistries. If you're planning on taking one of those courses, then you might be here looking for a document or web page relating to them. In Term 1 of the 2013/14 academic year, he taught Chemistry 220. In Term 2, he is teaching Chemistry 335 and a special topics course on the Chemistry of Colours.

Course Documents [top]

This section houses documents for Dr. McNeil's courses, such as extra copies of handouts, and answer keys to problem sets and exams.

Chemistry 335
Review Session: Sat Apr 26, 9AM - 12:30PM, SCI 337
Final Exam: Mon Apr 28, 9 - 12PM, EME 1202

Syllabus (yellow)
Information about metalloproteins and element abundances (blue)
Information about amino acids and protein structure (purple)
Various organic and metal cofactors (salmon)
Matters pertaining to Hard Soft Acid Base Theory, ionic radii, and complex stability (pink)
A primer on crystal field theory (goldenrod)
Electron Transfer and Marcus Theory (yellow)
Electron Transfer Proteins (green)
Mitochondrial Electron Transport (blue)
Photosynthetic Electron Transport (purple)
Dioxygen Transport Proteins (salmon)
Facts and definitions about O2, oxidases, and oxygenases (pink)
cytochromes P450 and soluble methane monooxygenase
aromatic amino acid hydroxylases (AAAHs) and Rieske dioxygenases
Catechol dioxygenases and information about the nitrogen cycle
nitrate reductases
Cu and cd1 nitrite reductases
Cytochrome c nitrite reductase
Carbon monoxide dehydrogenase / Acetyl CoA synthase
Zinc enzymes
Galactose Oxidase
Cu Amine Oxidases
student presentations

Problem Sets/Exams/Presentations
Problem Sets: PS#1 PS#2 PS#3 PS#4

Web page for Problem Set #1
Papers for PS#2: Science95 JACS96 JACS98

PS and Exam Answer Keys:
PS#1Key, PS#2Key, PS#3Key PS#4Key

Midterm answer key

The list of topics and schedule for the oral presentations

Lab Materials
C335 Lab Manual
C335 Lab Schedule
Spartan files for Experiment #1
Reference for Experiment #1

Computer Stuff
A Brief Guide to Using Spartan
Download UBCMol, a self-contained Java applet for the exploration and visualization of molecular and protein structure.
Download a User's Guide for UBCMol
A script for UBCMol, useful to display things that bioinorganic chemists care about.
Explore protein structures at the Protein Data Bank

Course Pages [top]

Chemistry 121/220
Mark Winter's Orbitron Gallery of atomic orbitals, at Sheffield
Richard Spinney's Hydrogen Atomic Orbitals, at Ohio State
Robert Hanson's hydrogenic orbital wavefunction viewer, at St. Olaf's College
Molecular geometries as predicted by VSEPR
orientation of d-orbitals in various crystal fields, at the University of the West Indies
Illustration of symmetry elements and operations
A gallery of point groups
Another page examining symmetry elements and operations, at Otterbein University
William Coleman's continuum of ionic and covalent bonding in MO theory, at Wellesley College
Java applet illustrating the electromagnetic wave nature of light

Chemistry 339
Structures of:
various boranes
various binary element hydrides
some main group ring and cage compounds
some alkyl lithium compounds
various ionic, associated covalent, and network solids

Chemistry 335
the Protein Data Bank
representations of various levels of protein structure
structures of various proteins and enzymes:
ferritin, the protein used for iron storage
electron transfer proteins
mitochondrial electron transport chain
photosynthetic electron transport chain
dioxygen transport
oxygenase enzymes
nitrogenase enzymes
various zinc proteins

Chemistry 422S
structures of bovine rhodopsin, showing conformational change of the retinal chromophore
structures of green and red fluorescent proteins

Links [top]

Need some help with chemistry? Visit the Chemistry Course Union in Sci 233B, attend a Supplemental Learning session, or drop by the Math and Science Centre in UC 201 when there's a chemistry tutor on duty.

If you're a chemistry or biochemistry student, you need a program to draw proper chemical structures.
• Both ACDLab's Chemsketch and Accelrys's Accelrys Draw are PC programs that are free for academic and personal use.
MarvinSketch is Java-based, and will run on PC, Mac, or Linux.
BKChem runs on Python, and so works on PC, Mac, or Linux.

Need a periodic table? Of course you do. Your choice:
• A practical black and white one.
• A pretty full colour one, with names but no molar masses.
• Another very attractive colour table, with both.
• Or, if none of those strikes your fancy, try one of these.

Looking for reference data for that lab write-up? Try these sites:
Webelements and PTable have more data on the elements than you could ever hope to use.
• The CRC Handbook of Chemistry and Physics
• The NIST Chemistry WebBook
• Data tables at Franklin and Marshall College
Properties of Organic Compounds (over 29000 of them)
• The Spectral Database for Organic Compounds (SDBS)
• Nakamoto's Infrared and Raman Spectra of Inorganic and Corrdination Compounds:
    • Part A is theory and main group compounds
    • Part B is coordination compounds, organometallics, and bioinorganic.
• Online Material Saftey Data Sheets (MSDS) at the Canadian Centre for OHS
Sigma-Aldrich can tell you the expected melting point, boiling point, flash point, and IR and NMR spectra of all your reagents and hoped-for products in your organic lab, and, if you screwed up the prep, they'll sell them to you.
• Do you have mysterious extra peaks in your NMR spectrum? You need this 1997 J. Org. Chem. paper to figure out what they are. There, isn't that like the most useful reference ever?

Think those latex gloves protect your hands from the solvents you're handling? Yeah, not so much.

There are lots of good databases of Jmol and Chime molecules to look at, including those at:
3DChem, featuring models of hundreds of inorganic compounds -- however, the models are based on qualitative idealized structures rather than experimental data (e.g. the bond angle in NF3 is not 109.5°), and many are simply wrong (e.g. [I5]+ isn't a W, TeO4 doesn't exist, [NO2] and N2O4 do not have unequal N-O bond lengths)
Wellesley College (all kinds of good stuff, including fullerenes)
Purdue University (lots of simple organic and inorganic molecules, coordination complexes, and inorganic crystals)
• and Dave Woodcock's world-famous molecular structure database, right here at what used to be OUC.

The Royal Society is dedicated to furthering informed communication between media and the scientific community, and is an excellent source of reliable scientific discussion about matters of current importance. Want to know what scientists really think about genetically-modified foods, global warming, or human cloning, and why?

You need to know How Stuff Works.

Believe it or not, there are sometimes even interesting research articles published in fields other than chemistry.

Bio [top]

Dr. McNeil comes to UBC Okanagan by way of the other University of British Columbia, the University of Washington, and Douglas College, whereby he has acquired an inordinate fondness for organometallic reaction mechanisms, vanilla-flavoured lattés, and teaching strategies designed to promote high levels of student engagement. He is a member of the Canadian Society for Chemistry Inorganic Division, the American Chemical Society, and Project Steve.

His ongoing interests include the use of new cobalt compounds as mediators for controlled radical polymerization, as green catalysts for oxidative lignin degradation, and as potential pharmaceutical agents; the development of Jmol and related interactive molecular visualization tools for use in chemical education; innovative large-class student-engagement strategies and research investigating their effectiveness; and esoteric and expensive board games. Something brought him here. Call it what you will. Fate. Destiny. A horse.


Learn about . . .
. . . a word
. . . a film
. . . a song
. . . a book
. . . a location
. . . an element
. . . a protein
. . . a drug
. . . a measurement
. . . a prize
. . . a game
. . . an esoteric fact
. . . the truth

Check . . .
. . . the mail
. . . the time
. . . the weather
. . . the news
. . . your wallet

Read . . .
. . . Science
. . . Nature
. . . J. Am. Chem. Soc.
. . . Organometallics
. . . Inorg. Chem.
. . . Chem. Rev.
. . . Angew. Chemie
. . . Eur.J.Inorg.Chem.
. . . an RSC journal
. . . J. Chem. Ed.
. . . Chem. Eng. News
. . . Sci. Creat. Quart.
. . . Journal Club

Search . . .
. . . Web of Science
. . . SciFinder

Laugh at . . .
. . . dinosaurs
. . . stick men
. . . grad students
. . . history

Buy . . .
. . . chemicals
. . . lab equipment

This page is maintained and copyright by W. Stephen McNeil at UBC Okanagan.
All educational works available on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.