W. Stephen McNeil Stephen McNeil
Department of Chemistry
UBC Okanagan
3247 University Way, Fipke 352
Kelowna, BC, Canada
V1V 1V7
Office: Fipke 352
Phone: 250.807.8751
s.mcneil@ubc.ca
@wsmcneil


Dr. W. Stephen McNeil is an Associate Professor in the Department of Chemistry at UBC Okanagan, in Kelowna, British Columbia. Information regarding Dr. McNeil's research interests and publications may be found on his faculty research page.

Dr. McNeil often teaches courses such as Chem 220 (Atomic Structure and Molecular Bonding), Chem 335 (Bioinorganic Chemistry), and he occasionally forays into general, main group, and organometallic chemistries. If you're planning on taking one of those courses, then you might be here looking for a document or web page relating to them. In Term 1 of the 2018/19 academic year, he is teaching Chemistry 111/121 and Chemistry 220, and in Term 2, he is teaching Chemistry 335.

Course Documents [top]

Chemistry 111/121

Handouts
Syllabus
• Learning Objectives (pink):
- Review and Stoichimetry
- Atomic Structure and Gases
- Quantum Theory and Orbitals
- Molecular Structure and Bonding
- Intermolecular Forces and Separation Science
Stoichiometry and Atomic Structure
Electromagnetic Radition, Spectroscopy, Bohr, Schrodinger
Orbitals and Aufbau
Periodic Trends in Atomic Properties
Lewis Structures
Valence Shell Electron Pair Repulsion theory (VSEPR)
(Don't miss the VSEPR webpage!)
Valence Bond Theory and hybridization
Intermolecular Forces

Guided Inquiry - Gas Laws & Kinetic Molecular Theory
Guided Inquiry - Atomic Orbitals
Guided Inquiry - VSEPR
Guided Inquiry - IMFs


Supplemental Learning Sessions
• Monday: 3:30-5:00 pm, UNC 201, Rachel
• Tuesday: 4-5:30 pm, ART 218, Matthew
• Thursday: 2:00-3:30 pm, UNC 201, Jasper
• Thursday: 3:30-5:00 pm, ART 210, Rachel
• Friday: 2:00-3:30 pm, UNC 201, Jasper
• Friday: 4:30-6:00 pm, UNC 201, Matthew

Chemistry 220

Handouts
Syllabus (salmon)
Quantum Numbers and Wavefunction Plots (goldenrod)
table of quantum numbers and orbitals
Don't miss Bob Hanson's Orbital Viewer to explore the nature of the orbital wavefunctions.
Angular Orbital Shapes (yellow)
Screening, Penetration, and aufbau (green)
• Trends in atomic properties (blue)
• Graphs of ionization energy and electron affinity
kinetic and potential energy of the H-H bond
Lewis structures (purple)
molecular geometry in VSEPR and VBT (pink)
(Don't miss the VSEPR webpage!)
VBT and hybrid orbitals (salmon)
Variable hybridization schemes and bond angles
• Some examples of coordination complexes
Crystal Field Theory (goldenrod)
• a graph of [M(H2O)6]2+ hydration enthalpies
Symmetry and Character Tables (yellow)
Molecular Orbitals (green)

Pretty colour MO diagrams for:
N2 O2 and F2
N2 and CO
BeH2 H2O and NH3
CO2 SF6 and an octahedral TM complex
π-bonding in organic compounds

Lab and Other Course Materials
Chem 220 Lab Manual
• The Experiment 6 webpage
WebMO access via Canvas
• An online User's Guide to WebMO
• Lab Answer Keys: Exp1 Exp2 Exp3 Exp4 Exp5 Exp6

TA office hours
TA: Ryland Giebelhaus
• M 9-10am, ART 202 (CHEM 220 hours)
• T 12:30-1:30pm, SCI 233B (CCU hours)
• Th 10-11am, SCI 233B (CCU hours)
• Th 2:30-4pm, ART 203 (CHEM 220 hours)

Problem Sets and Exams
• Problem Sets: PS#1 PS#2 PS#3 PS#4
SO2 and SeO2 structures for PS#2
structures for PS#4

• Answer Keys: PS#1 Key PS#2 Key PS#3 Key PS#4 Key
Midterm Exam - Answer Key

Study Materials
Background Readings and Problems
Midterm Review Questions
Midterm Review Answer Key
• In-Class Socrative Questions: Atomic Orbitals, Lewis/VSEPR, valence bond theory, CFT


Course Pages [top]

Chemistry 111/121 and 113/123
• Chemistry simulations at The King's Centre for Visualization in Science, including
   • atomic weight calculator
   • mass spectrometer
• Chemistry simulations at PhET at the University of Colorado Boulder, including
   • Gas Properties
   • Photoelectric Effect
   • Molecules and Light
   • Beer's Law
   • Molecular Polarity
   • States of Matter
   • Reversible Reactions
• Animation illustrating the electromagnetic wave nature of light
• Mark Winter's Orbitron Gallery of atomic orbitals, at Sheffield
• Richard Spinney's Hydrogen Atomic Orbitals, at Ohio State
• Robert Hanson's hydrogenic orbital wavefunction viewer, at St. Olaf's College
Molecular geometries as predicted by VSEPR
• Animation of thin layer chromatography at the Royal Society for Chemistry's Interactive Lab Primer
representations of organic molecules
conformations of organic molecules
enantiomers and R/S nomenclature
• Alison Flynn's outstanding organic nomenclature tutorial and quiz site at uOttawa, Nomenclature101 (also available en français).
• Richard Spinney's database of animated IR, 1H NMR, 13C NMR, and MS spectra, at Ohio State


Chemistry 220
orientation of d-orbitals in various crystal fields, at the University of the West Indies
• A gallery of point groups
• Another page examining symmetry elements and operations, at Otterbein University
• William Coleman's continuum of ionic and covalent bonding in MO theory, at Wellesley College

Chemistry 335
• the Protein Data Bank
• representations of various levels of protein structure
• structures of various proteins and enzymes:
   • transferrin
   • ferritin, the protein used for iron storage
   • electron transfer proteins
   • mitochondrial electron transport chain
   • photosynthetic electron transport chain
   • dioxygen transport
   • oxygenase enzymes
   • nitrogenase enzymes
   • various zinc proteins

Chemistry 339
Structures of:
various boranes
various binary element hydrides
• some main group ring and cage compounds
• some organolithium compounds
• various ionic, associated covalent, and network solids
• various allotropes of carbon

Chemistry 422S
• structures of bovine rhodopsin, showing conformational change of the retinal chromophore
• structures of green and red fluorescent proteins

Links [top]

Need some help with chemistry? Visit the Chemistry Course Union in Sci 233B, attend a Supplemental Learning session, or drop by the Math and Science Centre in UNC 316.

If you're a chemistry or biochemistry student, you need a program to draw proper chemical structures. These programs also include some rudimentary name-to-structure and structure-to-name conversion.
• ChemAxon Marvin is a free Java-based program that runs on PC, Mac, or Linux, and as a browser-based version..
• Both ACDLab's Chemsketch and Accelrys' BIOVIA Draw are PC programs that are free for academic and personal use.

Lots of online tools will help you with naming organic compounds.
ChemSpider will quickly let you find the structure and name of compounds based on a molecular formula. (The 3D tools omit H atoms, though, so don't trust them.)
• Openmolecules name2structure tool quicky generates a molecular structure from a compound name.

Need a periodic table? Of course you do. Your choice:
• A practical table with element names and molar masses, in either black and white or colour.
• Another attractive colour table, from ptable.com.
• Or, if none of those strikes your fancy, try one of these.

Looking for reference data for that lab write-up? Try these sites:
Webelements and PTable have more data on the elements than you could ever hope to use.
• The CRC Handbook of Chemistry and Physics
• The PubChem offers basic physical properties and bioloigcal / pharmacological activity information on small molecules.
• The NIST Chemistry WebBook, including thermochemical and spectroscopic data
• The NIST Computational Chemistry Comparison and Benchmark Database has experimental physical data on over 1500 compounds, such as bond lengths and angles, vibrational frequencies, formation enthalpies, and dipole moments.
Dictionary of Organic Compounds and Properties of Organic Compounds
• The Spectral Database for Organic Compounds (SDBS)
• Nakamoto's Infrared and Raman Spectra of Inorganic and Coordination Compounds:
    • Part A is theory and main group compounds
    • Part B is coordination compounds, organometallics, and bioinorganic.
• Online Material Saftey Data Sheets (MSDS) at the Canadian Centre for OHS
Sigma-Aldrich can tell you the expected melting point, boiling point, flash point, and IR and NMR spectra of all your reagents and hoped-for products in your organic lab, and, if you screwed up the prep, they'll sell them to you.
• Do you have mysterious extra peaks in your NMR spectrum? You need this Organometallics paper and this J. Org. Chem. paper to figure out what they are. There, aren't those the most useful references ever?

Think those latex gloves protect your hands from the solvents you're handling? Yeah, not so much.

There are many databases of Jmol molecules to look at, including those at:
ChemTube3D, featuring models of hundreds of inorganic compounds. However, anaylze these structures critically before using them. Many models are based on qualitative idealized structures rather than experimental data (e.g. the bond angle in NF3 is not 109.5°), and many are simply wrong (e.g. [I5]+ isn't a W, Cl2O6 does not have equivalent Cl atoms, TeO4 doesn't exist, [NO2] and N2O4 do not have unequal N-O bond lengths, [Ni(CN)4]2– is not tetrahedral, etc.).
Purdue University (lots of simple organic and inorganic molecules, coordination complexes, and inorganic crystals)

The Royal Society is dedicated to furthering informed communication between media and the scientific community, and is an excellent source of reliable scientific discussion about matters of current importance. Want to know what scientists really think about genetically-modified foods, global warming, or human cloning, and why?

You need to know How Stuff Works.

Believe it or not, there are sometimes even interesting research articles published in fields other than chemistry.

Bio [top]

Dr. McNeil comes to UBC Okanagan by way of the other University of British Columbia, the University of Washington, and Douglas College, whereby he has acquired an inordinate fondness for organometallic reaction mechanisms, well-crafted Americanos, and active-learning teaching strategies. He is a member of the Canadian Society for Chemistry Inorganic Division, the Chemical Institute of Canada Chemistry Education Division, the American Chemical Society, the Society for Teaching and Learning in Higher Education, and Project Steve.

His ongoing interests include development and assessment of innovative active-learning and student-engagement strategies, challenges associated with the learning of advanced chemical bonding models, science communication and chemistry outreach, and esoteric and expensive board games. He is the winner of the 2009 UBC Okanagan Award for Teaching Excellence and Innovation, the 2018 Canadian Society for Chemistry Faculty Advisor Award, and the 2018 UBC Okanagan Killam Teaching Prize. Ok. What's next?

 

Learn about . . .
. . . a word
. . . a film
. . . a song
. . . a book
. . . a location
. . . an element
. . . a protein
. . . a drug
. . . a measurement
. . . a prize
. . . a game
. . . an esoteric fact
. . . the truth

Check . . .
. . . the mail
. . . the time
. . . the weather
. . . the news
. . . the dollar
. . . your wallet

Read . . .
. . . Science
. . . Nature
. . . Nature Chemistry
. . . J. Am. Chem. Soc.
. . . Organometallics
. . . Inorg. Chem.
. . . Chem. Rev.
. . . Chem. Soc. Rev.
. . . Chem. Commun.
. . . Dalton Trans.
. . . Angew. Chemie
. . . Eur.J.Inorg.Chem.
. . . J. Chem. Educ.
. . . Chem. Educ. Res. Pract.
. . . Chem. Eng. News
. . . Sci. Creat. Quart.
. . . Compound Interest
. . . Journal Club

Search . . .
. . . Web of Science
. . . ERIC
. . . JSTOR
. . . SciFinder
. . . for a citation

Laugh at . . .
. . . dinosaurs
. . . stick figures
. . . grad students
. . . history

Buy . . .
. . . chemicals
. . . lab equipment


This page is maintained and copyright by W. Stephen McNeil at UBC Okanagan.
All educational works available on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.